

тел./факс: (095) 116-15-48 e-mail: info@unitsky.ru http://www.unitsky.ru

Предпроектное предложение

Пассажирская струнная транспортная система в государственном историко-архитектурном и природно-ландшафтном музее-заповеднике «Коломенское»

Содержание

Введение	.3
Цель проекта	
Техническое описание	
Технико-экономические показатели	
Этапы реализации проекта	.10
Выводы	.11
Иллюстрации	.13

Введение

Развитие инфраструктуры в условиях музея-заповедника с целью сохранения первозданности его природных, архитектурных, исторических и ландшафтных ценностей является первоочередной задачей, которую предлагается решить при помощи изобретения академика Российской академии естественных наук А.Э. Юницкого «Струнный транспорт Юницкого» (СТЮ). СТЮ защищен в Российской Федерации и за рубежом более чем сорока патентами.

Цель проекта

Цель проекта — создание уникальной инфраструктуры на территории государственного историко-архитектурного и природноландшафтного музея-заповедника «Коломенское» в г. Москве путем использования экологически чистой пассажирской струнной транспортной системы, не нарушающей окружающую среду во время ее возведения и эксплуатации, не требующей вырубки насаждений, земляных работ по устройству насыпей и выемок, строительства мостов, тоннелей и транспортных развязок, и требующей землеотвода только под опоры.

Основное назначение СТЮ:

- перевозка (доставка) туристов к туристическим пешеходным маршрутам, объектам осмотра, памятникам истории, культуры, архитектуры, ландшафта и т.д.;
- перевозка (доставка) жителей г. Москвы на левобережную часть Москвы-реки для массового отдыха;
- перевозка (доставка) к месту работы обслуживающего персонала музея-заповедника;

- проведение обзорных экскурсий для восприятия природноландшафтного музея-заповедника в движении с высоты птичьего полета;
- перевозка хозяйственных грузов, строительных материалов,
 мусора грузовыми транспортными модулями.

Техническое описание

Однопутная низкоскоростная пассажирская транспортная система СТЮ представляет собой размещенную на опорах предварительно напряженную растянутую канатно-балочную конструкцию, основу которой составляют струны из высокопрочной стальной проволоки диаметром 5 мм каждая, собранные в пучки и размещенные с провесом внутри пустотелых рельсов специальной конструкции. Пустоты в рельсе заполнены специальным высокопрочным бетоном. Струны и рельсы предварительно растянуты (усилием 150—300 тонн на один рельс) и жестко крепятся на девяти анкерных опорах высотой 5—10 м, расположенных в переломных точках трассы. На анкерных опорах размещены криволинейные участки трассы, а также — конструкции пассажирских посадочных платформ.

Анкерные опоры размещаются в зонах притяжения пассажиров в местах, свободных от застройки, инженерных коммуникаций, деревьев и с обязательным условием не препятствовать восприятию видовых точек исторического ансамбля в целом, отдельных его памятников, ландшафта и т.д.

Между анкерными опорами установлены поддерживающие (промежуточные) опоры с шагом от 15 до 200 м и высотой до 25—30 м в зависимости от рельефа местности, естественных водных преград,

ландшафта, скорости движения транспортных модулей и других условий.

Промежуточные и анкерные опоры изготавливаются из монолитного или сборного железобетона, или стальных труб диаметром от 100 до 500 мм (в зависимости от нагрузок и усилий в конструктивных элементах). Сборные конструкции поставляются к месту установки в комплектном виде и монтируются на готовые свайные или плитные фундаменты.

Суммарная горизонтальная технологическая нагрузка на анкерные опоры — до 500 тонн. Суммарные вертикальные нагрузки на анкерные и промежуточные опоры (с учетом веса технологических и пассажирских модулей) — до 15 тонн. Продольные горизонтальные нагрузки на промежуточные опоры не превышают 200 кгс (воздействие тормозных усилий), поперечные — до 1000 кгс (воздействие бокового ветра).

однопутной путевой структуре движутся пассажирские транспортные модули — юнибусы — вместимостью 24 пассажира со скоростью 100 км/час (средняя ДΟ скорость разгона/торможения — 50 км/час). Кольцевая однопутная пассажирская трасса протяженностью 7,8 км с тринадцатью остановочными пунктами представляет собой в плане многоугольник, соединяющий собой главный вход в музей-заповедник, правобережную и левобережную части Москвы-реки со станцией метро «Коломенская» (рис. 1). Остановочные ПУНКТЫ оснащены пассажирскими посадочными платформами, спроектированными для одновременной посадки-высадки пассажиров двух транспортных модулей.

Вся трасса проходит по территории музея-заповедника, за исключением двух участков, прилегающих к станции метро «Коломенское»: участок протяженностью около 400 м вдоль улицы Новинки и 600 м — вдоль проспекта Андропова.

Расчетное время посадки-высадки пассажиров — 40—60 сек (посадка в транспортный модуль осуществляется с перрона с двух сторон; пол модуля находится на уровне поверхности перрона). При средней скорости в 50 км/час и тринадцати остановках расчетное время движения одного транспортного модуля на одну поездку по кольцу составит 20 минут, т.е. один транспортный модуль за 1 час выполнит 3 поездки (при сокращении времени посадки-высадки пассажиров до 25—30 сек, как в метро, один круг транспортный модуль совершит за 15 мин). Исходя из расчетного количества перевозимых пассажиров (10 млн. чел./год) при двухсменной работе и 350 рабочих днях в году необходимо иметь на трассе не менее 25 пассажирских транспортных модулей вместимостью 24 человека каждый. Среднее расстояние между модулями на трассе при этом составит 300 м, интервал движения — 48 сек.

Поскольку число обзорных поездок (по кольцу) составит не более 10% от общего числа поездок (большинство пассажиров будет двигаться либо «в музей-заповедник», либо обратно «из музея-заповедника», т.е. поездка по кольцу будет разделена на две поездки), то указанное количество юнибусов (25 шт.) обеспечит перевозку 14—18 млн. пассажиров в год (7—9 млн. человек в одну сторону и 7—9 млн. человек — в другую).

Радиорелейная система управления совместно с действиями 25 водителей обеспечат заданные интервалы, скорость движения транспортных модулей и бесперебойную эксплуатацию трассы.

36 человек обслуживающего персонала обеспечат двухсменную эксплуатацию, послесменную уборку, ремонт и техническое обслуживание транспортных модулей. Расчетное количество водителей при пятидневной рабочей неделе — 75 чел., с учетом болезней, отпусков — 86 человек, включая 4 водителей грузовых модулей общее

их количество — 90 человек. Общее число персонала и водителей — 126 человек.

Срок создания такой кольцевой однопутной трассы составит не более 24 месяцев.

Приведенные ниже технико-экономические показатели потребуют уточнения при разработке рабочей документации и детального сметного расчета.

Технико-экономические показатели

- 1. Назначение перевозка пассажиров (туристов) к местам начала туристических маршрутов, доставка жителей Москвы к местам массового отдыха в музее-заповеднике на правобережной и левобережной частях Москвы-реки.
- 2. Характеристика местности сильнопересеченная с наличием оврагов и водной преграды.
 - 3. Протяженность трассы 7,8 км.
 - 4. Объем перевозок пассажиров 10 млн. человек в год.
- 5. Стоимость транспортной системы 13,6 млн. USD, в том числе:

Наименование составляющих	Количество	Стоимость	Общая
элементов трассы	(объем)	ед. объема	стоимость
		работ в тыс.	
		USD	
1. Транспортная линия, всего	7,8 км	876	6834
в том числе:			
1.1. Путевая структура	7,8 км	290	2262

Наименование составляющих	Количество	Стоимость	Общая
элементов трассы	(объем)	ед. объема	стоимость
		работ в тыс.	
		USD	
1.2. Фундаменты и опоры	7,8 км	240	1872
1.3. Система технического			
контроля за состоянием			
конструкций	комплект	150	150
1.4. Радиорелейная система			
управления движением	комплект	200	200
1.5. Удорожание трассы на			
участках перехода через			
Москву-реку	2 перехода	200	400
1.6. Остановочные пункты (и			
площадки)	13 шт.	150	1950
2. Подвижной состав, всего	31 шт.		2280
в том числе:			
2.1. Пассажирские транспортные			
модули вместимостью 24			
чел.	25 шт.	80	2000
2.2. Пассажирские транспортные			
модули аварийного резерва	2 шт.	80	160
2.3. Транспортный модуль для			
аварийного обслуживания			
трассы и контроля за ее			
техническим состоянием	1 шт.	60	60
2.4. Грузовые модули			
грузоподъемностью 2 т	3 шт.	20	60

Наименование составляющих	Количество	Стоимость	Общая
элементов трассы	(объем)	ед. объема	стоимость
		работ в тыс.	
		USD	
3. Депо для подвижного состава	1 шт.	600	600
4. Проектно-изыскательские	7,8 км трассы		
работы по трассе и	и 2 перехода		
инфраструктуре	через реку		900
5. Проектно-конструкторские			
работы по путевой структу-			
ре, подвижному составу,			
системам управления			750
6. Прочие и непредвиденные			
расходы (20%)	_		2236
Итого			13600

- 6. Мощность дизельного двигателя транспортного модуля 45 кВт (двигатель производства Германии отвечает международным нормам по чистоте выхлопа; при необходимости может быть установлен электродвигатель с питанием от аккумуляторов).
 - 7. Средняя скорость движения 50 км/час.
 - 8. Планируемый срок службы транспортной системы 100 лет.
 - 9. Планируемый срок службы транспортных модулей 20 лет.
- 10. Максимальные годовые эксплуатационные издержки, всего 1100 тыс. USD,

в том числе:

- 10.1. Заработная плата обслуживающего и водительского персонала (126 чел.) 510 тыс. USD;
 - 10.2. Стоимость топлива и ГСМ 150 тыс. USD;

- 10.3. Ремонт и содержание трассы 80 тыс. USD;
- 10.4. Ремонт и содержание транспортных модулей 60 тыс. USD;
- 10.5. Сумма амортизационных отчислений 300 тыс. USD.
- 11. Удельные эксплуатационные издержки на перевозку 1 пассажира по кольцу 0,11 USD, на доставку на левый берег Москвыреки 0,055 USD.
 - 12. Срок создания (строительства) 24 месяца.
- 13. Срок окупаемости трассы при цене билета 0,7 USD не более 3 лет с учетом всех налогов и выплат на погашение кредита с момента его получения, при цене билета 1 USD 2 года с учетом всех налогов и выплат на погашение кредита с момента его получения.

Этапы реализации проекта

Проект может быть реализован в 2 этапа.

Первый этап — проектирование и строительство опытного участка СТЮ на левом берегу Москвы-реки протяженностью 1840 м, доработка и изготовление концепт-модуля и сертификация СТЮ (рис. 2). Стоимость работ — 3,2 млн. USD, срок — 12 месяцев с начала финансирования.

Второй этап — строительство остальной части трассы СТЮ (с включением в нее опытного участка) и инфраструктуры, а также — изготовление подвижного состава (рис. 3—5). Стоимость работ — 10,4 млн. USD, срок — 12 месяцев. Проектные работы по второму этапу могут быть начаты одновременно с проектно-изыскательскими работами по первому этапу.

В настоящее время под руководством академика А.Э. Юницкого завершен проект центра ООН-Хабитат FS-RUS-98-S01 «Устойчивое развитие населенных пунктов и улучшение их коммуникационной

инфраструктуры с использованием струнной транспортной системы», который получил высокую оценку экспертов ООН.

В 2001—2005 г.г. в г. Озеры Московской области прошли апробацию конструктивные и технологические особенности СТЮ на испытательном стенде протяженностью 150 м и высотой опор до 15 м при весе транспортного модуля 9 тонн (длина пролетов до 48 м, суммарное натяжение струн 350 тонн). Полученный опыт позволяет спроектировать и построить сначала опытный участок протяженностью 1840 м на левом берегу Москвы-реки, а после сертификации остальную трассу. Пассажирский модуль вместимостью 24 чел. в настоящее время спроектирован (рис. 6), a после открытия финансирования будет доработан в соответствии с требованиями музеязаповедника и изготовлен на предприятиях г. Минска (автозавод МАЗ и др. заводы, конструкторы и технологи которых привлекались к проектно-конструкторским работам).

Выводы

Использование СТЮ для перевозки туристов на территории музеязаповедника «Коломенское» обеспечивает:

- 1. Возможность перемещения 10 млн. человек в год без нанесения ущерба природе.
- 2. Предоставление возможности использовать территорию левого берега Москвы-реки для массового отдыха и развлечений жителей Москвы и дальнейшего его развития.
- 3. Расширение возможностей ознакомления с историко-культурными ценностями заповедника.

- 4. Восприятие объектов заповедника и панорамы Москвы с различных точек при движении транспортных модулей с высоты птичьего полета.
- 5. Относительно быстрое строительство трассы.
- 6. Низкую материалоемкость трассы (80—100 кг металла на 1 м трассы, что примерно равно материалоемкости одного рельса Р75 магистральной железной дороги).
- 7. Низкую стоимость 1 км пути по сравнению с монорельсовыми и канатными дорогами.
- 8. Сохранение экологии территории заповедника.
- 9. Быструю окупаемость вложений в проект (до 3 лет) и высокую рентабельность эксплуатации (более 100%), что обеспечит высокую и стабильную прибыль в течение длительного периода времени (не менее 50 лет).
- 10. Принципиально новая транспортная система второго уровня, впервые в мире построенная на территории заповедника «Коломенское», с новым поколением сверхсовременного подвижного состава, объектом сама станет туризма дополнительно привлечет туристов И отдыхающих В заповедник.
- 11. Трасса СТЮ позволит создать новую инфраструктуру для отдыха и развлечений москвичей и туристов на левом берегу Москвы-реки, доходность от которой превысит доходность от использования самой трассы.

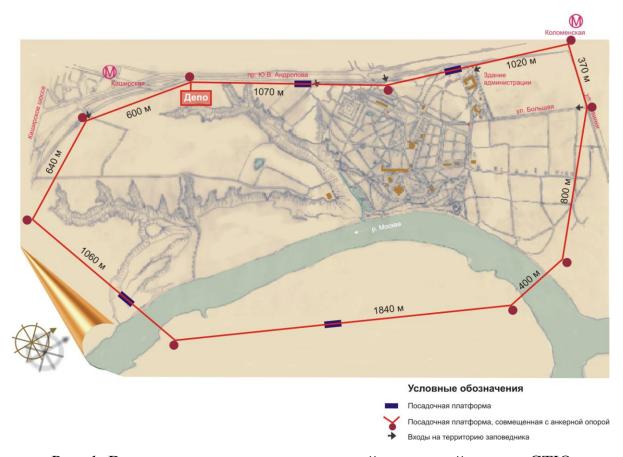


Рис. 1. Вариант трассировки однопутной кольцевой трассы СТЮ в ГМЗ «Коломенское»

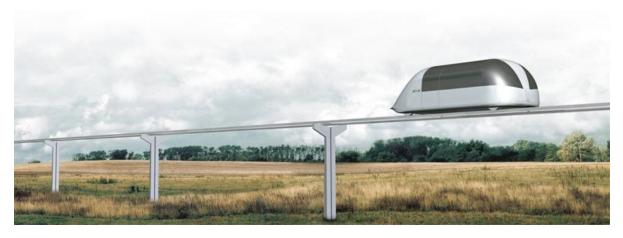


Рис. 2. Вариант выполнения фрагмента трассы СТЮ на железобетонных опорах

Рис. 3. Вариант общего вида трассы СТЮ в ГМЗ «Коломенское»

Рис. 4. Вариант общего вида трассы СТЮ в ГМЗ «Коломенское»

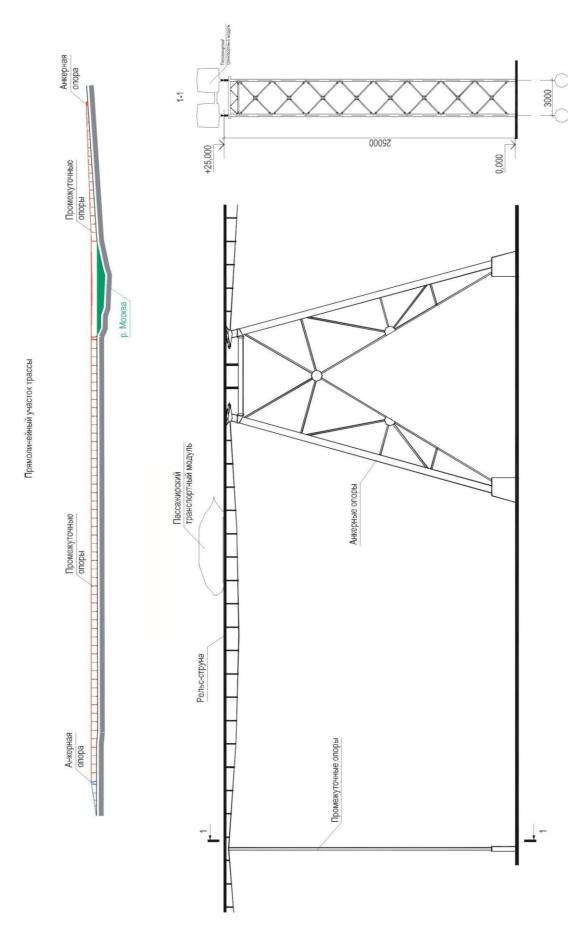
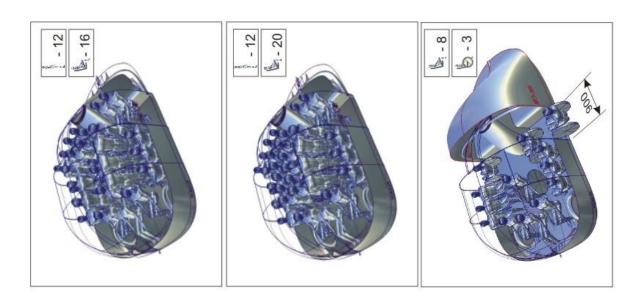
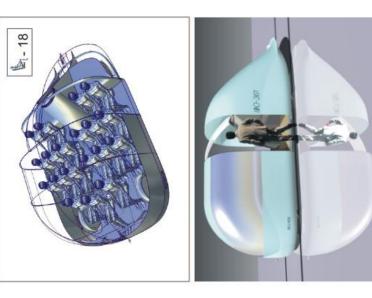




Рис. 5. Вариант выполнения фрагмента трассы СТЮ на металлических опорах

▼SS00

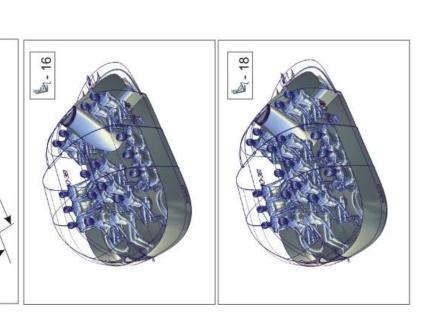


Рис. 6. Варианты заполнения пассажирами юнибуса Ю-361