ТРАНСПОРТНЫЕ СИСТЕМЫ >>

на Земле и в Космосе

Отсюда с учетом нулевых граничных условий получим функцию перемещений

$$y_{20}(x) = g \frac{\rho_1 + \rho_2}{2T_2} (l_0 - z)z,$$

которая использовалась при выводе уравнений (4.13). Очевидно, что

$$y_{20}^{\max} = g l_0^2 \frac{\rho_1 + \rho_2}{8T_2}.$$

Если положить, например, длину пролета $l_0=50$ м, суммарную массу на единицу длины струн $\rho_1+\rho_2=100$ кг/м и натяжение струн $T_2=10^7$ H, то максимальное перемещение $y_{20}^{\rm max}=3,125$ см. Малое значение перемещения $y_{20}^{\rm max}$ позволяет заменить функцию $y_{20}(z)$ в формулах (4.9) ее средним значением на пролете.

Пусть две одинаковые нагрузки величиной P действуют на пролет в точках $z=b,\ z=b+l_1$. В результате пролет разбивается на три участка, равновесие которых описывается уравнением

$$\frac{d^2u_i}{dz^2}=0, \quad i=\overline{1,3}.$$

Отсюда с учетом условий

$$u^{1}(0) = u^{3}(l_{0}) = 0; \quad u^{1}(b) = u^{2}(b); \quad u^{2}(b+l_{1}) = u^{3}(b+l_{1});$$

$$T'\frac{d}{dz}(u^{2}-u^{1})_{z=b} = -P; \quad T'\frac{d}{dz}(u^{3}-u^{2})_{z=b+l_{1}} = -P$$

находим:

$$u^{i}(z) = \frac{P}{T'}(C^{i}z + D^{i}), \quad i = \overline{1,3};$$
 $C^{1} = 2 - \frac{2b + l_{1}}{l_{0}}; \quad C^{2} = C^{1} - 1; \quad C^{3} = -\frac{2b + l_{1}}{l_{0}};$
 $D^{1} = 0; \quad D^{2} = b; \quad D^{3} = 2b + l_{1}.$

Простые рассуждения приводят к выводу, что максимальный прогиб пролета

$$u^{\max} = \frac{P}{T'} \left[-\frac{2}{l_0} b^2 + b \left(2 - \frac{3l_1}{l_0} \right) - \frac{l_1^2}{l_0} + l_1 \right].$$

Считая l_1 постоянной величной, найдем:

$$u_{\rm c}^{\rm max} = \max u_{\rm max}(b)$$
.

После несложных вычислений получим:

$$u_{c}^{\max} = \begin{cases} \frac{l_{0}P}{2T'} \left(1 - \frac{l_{1}}{2l_{0}}\right)^{2}, & 0 \leq l_{1} \leq \frac{2}{3}l_{0}; \\ \frac{l_{1}P}{2T'} \left(1 - \frac{l_{1}}{l_{0}}\right), & \frac{2}{3} \leq l_{1} \leq l_{0}. \end{cases}$$

$$(4.44)$$

Полагая в (4.44) l_1 = 0 и разделив полученный результат пополам, получим максимальный прогиб пролета под действием одной нагрузки P:

$$u_{\rm c}^{\rm 1max} = \frac{l_0 P}{4T}.\tag{4.45}$$

4.2.2. Колебания пролета при движении одиночной нагрузки

Для определения колебаний пролета под действием одиночной нагрузки необходимо решить уравнение (4.41) при условиях (4.42), (4.43).

Динамический прогиб. Общий случай. Для удобства дальнейших преобразований введем новую переменную *z'*

$$z=\frac{l_0z'}{\pi}.$$

Уравнение (4.41) и условия (4.42), (4.43) примут вид:

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\pi^2}{l_0^2} \frac{\partial^2 u}{\partial z'^2} = \frac{P}{\rho'} \delta \left(\frac{l_0}{\pi} z' - \nu t \right) \sigma \left(0, \frac{l_0}{\nu} \right); \tag{4.46}$$