ТРАНСПОРТНЫЕ СИСТЕМЫ >>

на Земле и в Космосе

Подставив функцию (4.111) в разложение (4.71), получим прогиб пролета под действием потока нагрузок.

Динамический прогиб u(z, t) представим в виде суммы

$$u(z,t) = u_0(z) + u_{\text{\tiny KOJ}}(z,t)$$
 (4.112)

где стационарная составляющая прогиба имеет вид:

$$u_0(z) = \frac{4P}{\pi l \rho_s} \sum_{n=1}^{\infty} \frac{D_n(0)}{n} \sin \frac{n\pi z}{l_0}, \quad n$$
 — нечетное. (4.113)

Итак, функция $u_0(z)$ задает неизменяющуюся со временем форму пролета, относительно которой происходят его колебания при движении потока нагрузок. Эти колебания описываются колебательной составляющей $u_{\text{кол}}(z,t)$.

Из равенства (4.113) следует, что величина стационарной составляющей прогиба в любой точке пролета пропорциональна отношению P/l (средней плотности нагрузки на СТЛ) и не зависит от величины скорости движения нагрузок. Легко видеть, что график функции $u_0(z)$ симметричен относительно вертикальной прямой, проходящей через середину пролета. Это значит, что $u_0(z)$ не зависит также и от направления движения нагрузок. Максимальное значение прогиба $u_0^{\max}(z)$ достигается в середине пролета:

$$u_0^{\text{max}} = \frac{4P}{\pi l \rho_s} \sum_{n=1}^{7} \frac{D_n(0)}{n} (-1)^{[n/2]}, \quad n - \text{нечетное.}$$
 (4.114)

Чтобы упростить дальнейший анализ, будем считать, что нижняя струна скреплена с корпусом СТЛ, что равносильно очень большой жесткости заполнителя. После предельного перехода в равенстве (4.113) при $E_2 \to \infty$ получим:

$$u_0(z) = \frac{4P}{\pi l} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi z}{l_0}}{n\left(\frac{np}{l_0}\right)^{1/2} \left[EI\left(\frac{n\pi}{l_0}\right)^2 + T\right]}, \quad n - \text{нечетное,}$$
 (4.115)

где

$$T = T_1 + T_2.$$

ТРАНСПОРТНЫЕ СИСТЕМЫ >>

Функцию (4.115) можно понимать, как статический прогиб пролета под действием распределенной нагрузки с плотностью $f_0(z)$. Поскольку $u_0(z)$ удовлетворяет уравнению

$$EI\frac{d^4u_0}{dz^4} - T\frac{d^2u_0}{dz^2} = f_0 (4.116)$$

с условиями

$$u(0) = \frac{d^2u(0)}{dz^2} = u(l_0) = \frac{d^2u(l_0)}{dz^2},$$
(4.117)

TO

$$f_0(z) = \frac{4P}{\pi l} = \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi z}{l_0}, \quad n$$
 – нечетное. (4.118)

Выражение (4.118) упростится, если учесть, что в интервале $[0,\ l_0]$ разложение единицы в ряд по синусам имеет вид:

$$1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi z}{l_0}, \quad n - \text{нечетное.}$$

Тогда $f_0(z) = P/l$, т. е. $u_0(z)$ – статический прогиб пролета от равномерно распределенной нагрузки с плотностью P/l'. Теперь, зная f_0 , можно решить задачи (4.116), (4.117), найти $u_0(z)$ и просуммировать ряд (4.115).

Найдем приближенно u_0^{\max} из (4.115), ограничившись благодаря быстрой сходимости данного ряда лишь первым членом:

$$u_0^{\text{max}} = \frac{4P}{\pi l \left(\frac{\pi}{l_0}\right)^2 \left[EI\left(\frac{\pi}{l_0}\right)^2 + T\right]}.$$
 (4.119)

Если взять, например, $l'=l_0$, $l_0=100$ м, $P=10^4$ H, $T=10^7$ H, $EI=10^5$ H · м², то $u_0^{\rm max}\sim 0,13$ м. Важной характеристикой колебательных систем являются резонансные параметры. Для определения резонансных режимов движения достаточно найти условия, при которых амплитуда колебаний функции $q_n(t)$ достигает максимального значения при μ' , μ_2 и обращается в бесконечность для μ' и $\mu_2=0$.