

Рисунок 4.21

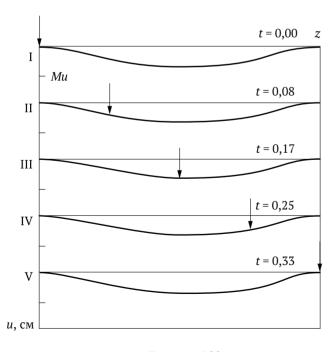


Рисунок 4.22

2. Поток нагрузок на СТЛ с разрезным корпусом (рисунки 4.11-4.13) и сплошной СТЛ (рисунки 4.14-4.16):

- основной вклад в значение прогиба в любой точке пролета вносит его стационарная составляющая (\approx 90 % при l_0 = 25 м, \approx 80 % при l_0 = 35 м, \approx 70 % при l_0 = 50 м), величину которой можно найти, решая задачу о равновесии пролета под действием равномерно распределенной нагрузки (см. п. 4.3.2, 4.3.4);
- колебательная составляющая прогиба при любой длине пролета $l_{\scriptscriptstyle 0}$ представлена в основном компонентой, симметричной относительно середины пролета, т. е. динамический прогиб слабо зависит от направления движения потока нагрузок;
- максимальный прогиб растет с увеличением длины пролета $l_{\scriptscriptstyle 0}$ и мало в сопоставлении с $l_{\scriptscriptstyle 0}$ (таблица 4.1).

Таблица 4.1 – Максимальный прогиб при движении потока нагрузок

Длина пролета $oldsymbol{l}_{\scriptscriptstyle 0}$, м	u₀ ^{max} , CM	
	разрезной корпус	сплошной корпус
25	0,8	0,7
35	1,0	0,8
50	1,3	1,1

4.4.2. Зависимость динамического прогиба пролета от скорости движения нагрузок

Выводы о зависимости прогиба пролета от скорости нагрузок можно сделать из анализа форм пролета, представленных на рисунках 4.8, 4.11, 4.14, 4.17–4.22 при $EI=10^6\,\mathrm{H\cdot m^2}$, $I_0=25\,\mathrm{m}$, $v=25,50,75\,\mathrm{m/c}$ для пяти моментов времени

$$t_k = \frac{l_0}{4v}k, \quad k = \overline{1,5}.$$

1. Одиночная нагрузка на СТЛ с разрезным корпусом (рисунки 4.8, 4.17, 4.18):

- при указанных выше скоростях движения нагрузки форма пролета четко отражает ее положение и направление движения;
 - в форме пролета просматриваются отраженные волны прогиба;
- максимальный динамический прогиб не превосходит 2 мм, что значительно меньше стационарной компоненты (таблица 4.1);
- колебания пролета практически отсутствуют по истечении $l_{\scriptscriptstyle 0}/4v$ с после схода нагрузки с пролета.

304