ТРАНСПОРТНЫЕ СИСТЕМЫ >>

Условные обозначения

ТРАНСПОРТНЫЕ СИСТЕМЫ >>

СТС – струнная транспортная система;

СТЛ – струнная транспортная линия;

ТМ – транспортный модуль;

 $2m_1$ – масса платформы ТМ;

 m_2 – масса колеса ТМ;

c, $v_{\rm a}$ – коэффициенты, характеризующие жесткость пружины и усилие демпфера в амортизаторе TM;

t – время;

z – координата точки пролета СТЛ;

 $u(z,\,t),\,u_2(z,\,t)$ – вертикальное отклонение от положения равновесия точек рабочей поверхности пролета СТЛ и нижней струны соответственно;

 $u_{\rm c}^{1{\rm max}}$, $u_{\rm c}^{2{\rm max}}$ – максимальный статистический прогиб пролета СТЛ при действии на него одной и двух сосредоточенных нагрузок соответственно;

 $u_d^{1 ext{max}}, u_d^{2 ext{max}}$ – максимальный динамический прогиб пролета СТЛ под действием одной и двух движущихся нагрузок соответственно;

l' – расстояние между нагрузками в потоке;

 l_0 – длина пролетов СТЛ;

 l_1 – расстояние между осями передних и задних колес ТМ;

 l_2 – расстояние между ТМ в потоке;

g – ускорение свободного падения;

 N_0 – количество пролетов СТЛ;

 T_1, T_2 – натяжение верхней и нижней струн соответственно;

 μ', E – коэффициент затухания и модуль упругости корпуса СТЛ;

 μ_2, E_2 – коэффициент затухания и модуль упругости заполнителя;

ρ_s – суммарная масса единицы длины корпуса, верхней струны и заполнителя СТЛ;

 ρ_2 – масса единицы длины нижней струны;

 $\delta(z)$ – функция Дирака;

U(t) – отклонение центра масс платформы ТМ от равновесного положения;

 $\varphi(t)$ – угол наклона к горизонтали продольной оси платформы ТМ;

I – момент инерции сечения корпуса СТЛ;

 $I_{c'}$ – момент инерции платформы ТМ относительно горизонтальной оси, проходящей через центр масс и перпендикулярной к направлению движения;

I – момент инерции участка;

 C_{x} – коэффициент аэродинамического сопротивления натурного объекта;

 β – угол натекания воздушного потока;

 $C_{x0}^{\text{мод}}$ – коэффициент аэродинамического сопротивления масштабной модели при нулевом угле натекания воздушного потока ($\beta=0$);

 $K_{\rm B}$ – коэффициент учета угла натекания воздушного потока;

 λ – корреляционный коэффициент от модели к натуре;

v – фазовая скорость бегущей волны;

N – нормальное усилие;

 $T_{_{\rm T}}$ – тангенциальное усилие;

τ – тангенциальное напряжение;

p(x, t) – контактное давление;

 \dot{u} – скорость проскальзывания;

i(x, t) – интенсивность линейного изнашивания;

 K_{t} – коэффициент пропорциональности;

γ – степенной показатель;

h – длина участка поверхности;

j – номер участка поверхности;

n – число этапов нагружения;

r – номер этапа нагружения;

u – смещение поверхности;

m – число элементов дискретизации зоны контакта;

 I_{v} – объемный износ;

 $[I_{v}]$ – максимально допустимый износ;

q – число циклов изнашивания;

 S_c – зона контакта;

 S_{ς} – зона проскальзывания;

 $A_{\rm f}$ – работа сил трения при проскальзывании;

f – коэффициент трения;

 f_0 – коэффициент трения покоя;

 $f_{\rm s}$ – коэффициент трения скольжения.