3. Законы сохранения применительно к геокосмическому транспорту

3.1. Закон сохранения энергии

Полная работа $A_{_{\Pi}}$, которую нужно совершить для доставки груза массой $m_{_{\Gamma}}$ с расстояния R от центра Земли до расстояния r (на круговую орбиту), равна *

$$A_{\rm m} = \frac{\mu_{\rm s} m_{\rm r}}{R} \left(1 - \frac{R}{2r} \right),\tag{1}$$

где µ₀ – гравитационный параметр Земли.

Для этого груз должен иметь характеристическую скорость V_{x} (у поверхности Земли):

$$V_{\rm x}^2 = \frac{2\mu_{\rm s}}{R} \left(1 - \frac{R}{2r} \right) = V_2^2 \left(1 - \frac{R}{2r} \right),$$
 (2)

где V_2 – вторая космическая скорость.

Транспортная система имеет следующие энергетические параметры.

1. Полные затраты энергии E_{r} на выведение в космос грузов:

$$E_{\rm n} = \frac{A_{\rm n}}{\eta_{\rm s}} = \frac{K_{\rm r}}{\eta_{\rm s}} = \frac{m_{\rm r} V_{\rm x}^2}{2\eta_{\rm s}} = \frac{m_{\rm r} \mu_{\rm s}}{\eta R} \left(1 - \frac{R}{2r}\right),\tag{3}$$

где η_9 – энергетический КПД ГКТ (с учетом всех предполетных и полетных потерь энергии); K_r – кинетическая энергия груза, имеющего скорость V_r .

2. Полная мощность $N_{_{\Pi}}$, развиваемая ГКТ при выведении грузов на орбиту:

$$N_{\pi} = \frac{E_{\pi}}{t} = \frac{m_{r} \mu_{s}}{\eta R t} \left(1 - \frac{R}{2r} \right) = \frac{m_{r} V_{2}^{2}}{\eta t} \left(1 - \frac{R}{2r} \right), \tag{4}$$

где t – время работы ГКТ (время подведения энергии к грузу).

3. Количество энергии E_{cc} , выбрасываемой в окружающую среду:

$$E_{\rm oc} = E_{\rm n} - A_{\rm n} = \frac{m_{\rm r} V_{\rm x}^2 (1 - \eta)}{2\eta} = \frac{m_{\rm r} \mu_{\rm s} (1 - \eta)}{\eta R} \left(1 - \frac{R}{2r}\right). \tag{5}$$

4. Мощность N_{cc} выброса энергии в окружающую среду:

СТРУННЫЕ

$$N_{\rm oc} = \frac{E_{\rm oc}}{t} = \frac{m_{\rm r} V_{\rm x}^2 (1 - \eta)}{2\eta t} = \frac{m_{\rm r} \mu_{\rm s} (1 - \eta)}{\eta R t} \left(1 - \frac{R}{2r}\right). \tag{6}$$

3.2. Законы сохранения импульса и момента импульса

Индустриальные кольца, размещенные на круговых экваториальных орбитах на высоте H=r-R и вращающиеся с орбитальной скоростью $V_{\rm op}$, имеют только момент количества движения $K_{\rm r}$ грузов, доставленных на эту орбиту, а их количество движения относительно планеты равно нулю, так как равна нулю радиальная (относительно планеты) скорость. Поскольку орбитальные кольца должны сооружаться с Земли (индустриализация космоса будет осуществляться производственными, сырьевыми, энергетическими и трудовыми ресурсами планеты — к тому времени космос этим еще не будет располагать*), то должно соблюдаться условие:

$$J_{\nu}\omega_{\nu} - J_{\nu}\omega_{\alpha} = \Delta K_{\alpha},\tag{7}$$

где $J_{\rm K}$ и $\omega_{\rm K}$ – соответственно, момент инерции и угловая скорость вращения орбитального кольца; $J_{\rm r}$ и $\omega_{\rm 3}$ – то же, при нахождении исходных грузов, из которых сооружено орбитальное кольцо на поверхности Земли; $\Delta K_{\rm 3}$ – изменение момента количества движения Земли.

С учетом того, что $V_{\rm op}^2 = \frac{\mu_3}{r}$, $J_{\rm K} = m_{\rm r} {\rm r}^2$ и $J_{\rm r} = m_{\rm r} R_2$, выражение (7) может быть записано:

$$\Delta K_{\rm s} = m_{\rm r} \left(\sqrt{\mu_{\rm s} r} - R^2 \omega_{\rm s} \right). \tag{8}$$

Из формулы (8) следует, что величина $\Delta K_{_3}$ не зависит от способа выведения груза на орбиту, а лишь от массы груза и высоты орбиты. Поскольку момент количества движения Земли $K_{_3}$ (относительно своей оси вращения) в любом случае должен измениться, то он обязательно должен быть передан планете от ГКТ. В общем виде КПД λ подведения импульса может быть и не равен единице, а в окружающую среду будет «выброшен» момент количества движения

$$K_{\rm oc} = \frac{m_{\rm r} \left(1 - \lambda\right)}{\lambda} \left(\sqrt{\mu_{\rm s} r} - R^2 \omega_{\rm s}\right). \tag{9}$$

^{*} Фертрегт, М. Основы космонавтики / М. Фертрегт. – М.: Просвещение, 1969. – С. 114.

^{*} Экспансия может идти только изнутри, а не извне. Последнее может произойти, если околоземной космос начнут осваивать внеземные цивилизации, но для них это развитие будет осуществляться также изнутри.