Как замкнутый тонкостенный тор рассматривается оболочка, выдерживающая статическое и динамическое давление атмосферы и способная упруго растягиваться до выхода из плотной атмосферы и отделения от ротора. Форма оболочки в сечении может варьироваться от круговой до хорошо обтекаемой каплеобразной.

В рамках принятой модели ротора и оболочки и других оговоренных выше ограничений и свойств определим следующее.

- 1. Общие условия, необходимые для вывода ротора на заданную круговую орбиту радиуса $R_{\rm k}$: величину стартовой скорости $V_{\rm p0}$ ротора, соотношения между исходными параметрами в начале радиального движения, моменты разделения на фрагменты, длины участков упругого и фрикционного расширения и т. д.
- 2. Параметры управляющего воздействия в данном случае силы трения для гашения энергии ротора в радиальном движении с целью неколебательного вывода на орбиту.
- 3. Параметры радиального и вращательного движения ротора положение, скорость, ускорение на различных этапах, время движения в режимах апериодического движения и свободных колебаний и т. д.
- 4. Условия на конечном этапе, обеспечивающие в положении, определяющем заданную орбиту, одновременное обращение в нуль радиальной скорости, радиального ускорения и деформации фрагментов ротора, что является необходимыми условиями для дальнейшего движения ротора на этой орбите.

1.2. Дифференциальные уравнения движения элемента системы «ротор – оболочка» в атмосфере

Исследуем влияние упругих сил, представляющих собой внутренние силы системы, на ее движение. Рассмотрим элемент, состоящий из дуги ротора и окружающей его оболочки с начальной длиной l и массами $m_{\rm p}$ и $m_{\rm o}$ (рисунок 13). В качестве обобщенных координат системы принимаем угол поворота ϕ и текущий радиус $r_{\rm p}$ орбиты ротора. Кинетическая энергия элемента системы

$$K = \frac{1}{2} \left(m_{\mathrm{p}} r_{\mathrm{p}}^2 \dot{\varphi}^2 + m \dot{r}_{\mathrm{p}}^2 \right),$$

где $m=m_{_0}+m_{_p};\;\dot{\phi}=\frac{d\phi}{dt}$ — угловая скорость ротора; $\dot{r_{_p}}=\frac{dr_{_p}}{dt}$ — радиальная скорость ротора и оболочки.

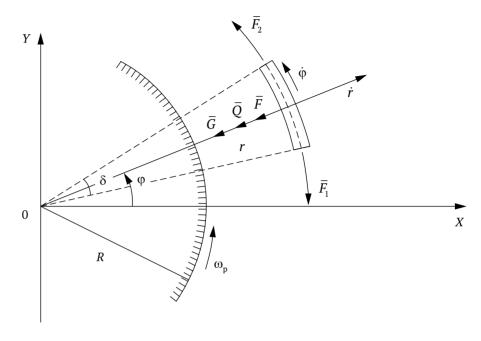


Рисунок 13 – Схема движения элемента системы «ротор – оболочка»

Силы, действующие на выделенный элемент системы:

1. Сила притяжения к центру Земли

$$G = mg \frac{R^2}{r_{\rm p}^2},\tag{1.1}$$

где g – гравитационное ускорение на экваторе [4]; R – радиус экватора.

2. Силы упругости F_1 , F_2 , действующие на концах элемента со стороны остальной части системы «ротор – оболочка», при этом F_1 = F_2 = F, F = $C\Delta L$, где C = $C_{\rm o}$ + $C_{\rm p}$ — суммарная жесткость ротора – оболочки; ΔL = $2\pi(r_{\rm p}-R)$ — удлинение системы «ротор – оболочка». Равнодействующая F сил \overline{F}_1 и \overline{F}_2 приложена в центре элемента и направлена по радиусу к центру Земли; ее модуль F = $2F_1\sin\frac{\delta}{2}$, где δ = l/R — центральный угол дуги l. Ввиду малости δ запишем F = δF_1 , тогда

$$F = 2\pi C l \left(\frac{r_{\rm p}}{R} - 1 \right).$$

406