$$V_0 > \left(1 + \frac{m_0}{m_p}\right)^{1/2} V_1.$$

Пусть, например, μ_1 = 0,3; при значениях R = 6,37 × 10 6 м, g = 9,814 м/с 2 имеем: $V_0 = \sqrt{1,3} \, V_1 = 9 \times 10^3$ м/с = 9 км/с. Для начала подъема системы «ротор – оболочка» в случае m_0 = 0,3 $m_{\rm p}$ необходимо разогнать ротор по отношению к эстакаде до относительной скорости

$$V_r = V_0 - V_e > 8,54 \text{ km/c},$$

где V_0 – абсолютная скорость; V_e = ΩR = 0,46 км/с – переносная скорость; Ω – угловая скорость Земли.

Радиальное ускорение при этом невелико; пусть V_r = 9,54 км/с, V_{p0} = 10 км/с, β = 1,6, μ_1 = 0,3, тогда $\ddot{r_0}$ = 0,233g = 2,28 м/с². В дальнейшем при расширении ротора и оболочки это ускорение уменьшается, поэтому радиальная скорость при движении в атмосфере будет небольшой, а сопротивление атмосферы невелико.

1.4. Динамика системы «ротор – оболочка» при движении в атмосфере

Заменяя в уравнении (1.3) $\dot{\phi}$ с помощью интеграла (1.6) и переходя к безразмерному радиусу $x = r/R \ge 1$, запишем дифференциальное уравнение радиального движения системы в атмосфере:

$$\ddot{x} = F(x) - K_0(x-1) - p\dot{x}^2 \exp\left[\alpha_{\pi}(x-1)\right], \tag{1.7}$$

где

$$F(x, \mu_1) = \frac{q}{x^2} \left(\frac{\beta}{1 + \mu_1} \frac{1}{x} - 1 \right);$$

$$q = \frac{g}{R}; \quad K_0 = \frac{2\pi Cl}{mR}; \quad p = \frac{k_{\phi} \rho_0 R}{m}.$$
(1.8)

Радиальное ускорение \ddot{x} убывает от начального значения

$$\ddot{x}_0 = F(1, \mu_1) = q\left(\frac{\beta}{1 + \mu_1} - 1\right)$$

до значения $\ddot{x}_1 = F(x_1, \, \mu_1) - K_0(x_1 - 1)$ в положении $x_1 = 1 + H/R$, где влияние атмосферы исчезает, и происходит сброс оболочки. При этом возможны случаи $\ddot{x}_1 \geq 0$ и $\ddot{x}_1 < 0$. В первом случае очевидно ограничение

$$K_0 \leq \frac{F(x_1, \mu_1)}{x_1 - 1}.$$

Используя соотношение (1.8), это ограничение можно выразить через начальные параметры системы.

Во втором случае необходимо обеспечить условие неотрицательности радиальной скорости \dot{x} , что будет рассмотрено ниже.

Умножим обе части уравнения (1.7) на dx; левая часть при этом преоб-

разуется к виду $\ddot{x}dx=d\bigg(\frac{\dot{x}^2}{2}\bigg)$. Проинтегрируем полученное соотношение

с пределами $x_0=1$ и $x,\ \dot{x}_0=0$ и $\dot{x}_0.$ В результате найдем выражение радиальной скорости на этапе движения системы в атмосфере:

$$\dot{x}^{2} = \left(x - x_{0}\right) \left[\frac{q}{x} \left(\frac{\beta}{1 + \mu_{1}} \frac{x + x_{0}}{x} - 2\right)\right] - 2a(x, x_{0}), \tag{1.9}$$

где $a(x, x_0) = p \int \dot{x}^2 \exp \left[-\alpha_n (x - 1) \right] dx$ – часть работы сил сопротивления атмосферы, приходящаяся на единицу массы ротора – оболочки.

Определяя из (1.9) x и умножая на R, найдем размерную радиальную скорость $V_{\text{рал}} = R\dot{x}\big(x\big).$

Радиальная скорость \dot{x} возрастает на этапе движения в атмосфере $[x_0,\ x_1]$ от значения $\dot{x}_0=0$ до некоторого максимального. Если $\ddot{x}_1\geq 0$, то максимальное значение достигается в положении x_1 . Если $\ddot{x}_1<0$, то в положении x', $x_0< x'< x_1$; ускорение \ddot{x}' обращается в нуль, а затем становится отрицательным.

Уравнение (1.7) допускает точное решение. После несложных преобразований и введения обозначений

$$u(x) = \dot{x}^2;$$
 $f_1(x) = p \exp[-\alpha_{\pi}(x-1)];$