ТРАНСПОРТНЫЕ СИСТЕМЫ >>

необходимые эксплуатационные свойства, в дальнейшем не используются, замещаясь другими на очередных фрагментах.

На участке фрикционного расширения имеем систему неразделившихся и нераздвигающихся фрагментов с разными упругими, прочностными и другими свойствами, различными удельными массами и т. д. Кроме центробежных и гравитационных сил, пропорциональных массам элементов, на эти фрагменты действуют силы трения и упругие силы, возникающие при натяжении элементов. Для разных пар соединенных друг с другом фрагментов относительные перемещения могут быть различны. При расчете движения конкретного ротора — с заданными механическими свойствами, конкретным устройством системы разделения на фрагменты, с известными свойствами фрикционных элементов и т. д. — необходимо построение полной схемы движения, вывод соответствующих дифференциальных уравнений, их анализ и решение.

При исследовании динамики движения ротора при выводе на орбиту рассмотрим модель ротора с усредненными свойствами: средним значением удельной массы, средними величинами сил трения и т. д. Натяжение элементов ротора силами трения приводит к их деформации, но значительно меньшей по сравнению с деформацией на этапе упругого расширения, когда возможно относительное перемещение фрагментов.

Жесткости элементов неразделенного ротора и его разделенных фрагментов отличаются на несколько порядков. Для целого ротора:

$$C_{\rm p} = \frac{ES_{\rm p}}{L},$$

где E – модуль упругости материала ротора; $S_{\rm p}$ – площадь его поперечного сечения, L – длина ротора.

Для элементов разделенного ротора:

$$C_{ij} = rac{E_i S_i}{L_{ii}}$$
 ,

где E_i , S_i — модуль упругости и площадь поперечного сечения отдельных фрагментов; L_{ij} — расстояние между фрикционными элементами с номерами j и j+1 на j-м фрагменте.

Если величины E_i , S_i сравнимы с E и S_p , то расстояние L_{ij} намного меньше общей длины ротора L. Поэтому жесткость C_{ij} на несколько порядков превышает C_p , и на отдельных участках между фрикционными элементами фрагментов ротор можно полагать нерастяжимым.

Рассмотрим, как и раньше, элемент ротора с длиной элемента l и массой $m=m_{\rm p}/x_2$ после разделения в точке x_2 . Кроме центробежной и гравитационной сил на концах элемента приложены силы натяжения \bar{F}' и \bar{F}'' , направленные по касательным и численно равные суммарным силам трения, действующим на фрикционные устройства фрагмента, содержащего данный элемент: $F'=F''=F_{2{
m Tp}}$. Действие сил \bar{F}' и \bar{F}'' такое же, как и на рисунке 13 для сил упругости \bar{F}_1 и \bar{F}_2 ; их равнодействующая

$$F = F_{2\pi p} l / r_2 = \frac{F_{2\pi p} l}{x_2 R}$$

приложена в центре элемента и направлена по радиусу, противоположному движению.

Первый этап фрикционного расширения осуществляется из положения x_2 до положения x_3 , где разделившиеся фрагменты выходят на упоры в телескопических соединениях, и далее начинается второй этап упругого расширения.

Силы трения являются внутренними силами ротора, поэтому уравнение вращательного движения (1.2) и интеграл (1.6) не изменяются и на этапе $[x_2,x_3]$. Уравнение радиального движения меняется: в правой части вместо упругих сил и их равнодействующей появляются силы трения и их равнодействующая \bar{F}_2 . Дифференциальное уравнение радиального движения на этапе фрикционного расширения принимает вид:

$$\ddot{x} - F(x,0) + f_2 = 0, \quad x_2 \le x < x_3;$$
 (1.31)
$$f_2 = \frac{F_{2\tau p}l}{m_p R^2}.$$

Выше предполагалось, что сила трения $F_{\rm 2rp}$ изменяется в зависимости от радиального положения ротора x. Это свойство потребуется на заключительном участке перед выходом на орбиту. На первом участке фрикционного расширения будем полагать $F_{\rm 2rp}$ и $f_{\rm 2}$ постоянными. Чтобы ускорение \ddot{x} стало отрицательным, и, следовательно, радиальное движение замедленным, необходимо выполнить условие

$$f_2 \ge F(x_2, 0).$$

Если потребовать обращения в нуль ускорения \ddot{x} в некоторой точке $x'>x_2$ участка фрикционного разрешения, то