т. е. Δx_1 также удовлетворяет ограничению (1.34). Нетрудно убедиться, что на остальных участках упругого расширения при указанных на рисунке 14 величинах это условие также выполняется.

Второй критерий связан с ограничением величины силы трения. Для погашения кинетической энергии радиального движения необходимо, чтобы сумма работ сил трения на всех участках фрикционного расширения была приблизительно равна энергии

$$\Delta K_2 = \frac{(x_k - 1)^2}{x_k} \frac{mV_1^2}{2},$$

где вместо x поставлено x_k . Чем больше длина фрикционных участков, тем меньше может быть величина сил трения и тем легче выполнить верхние ограничения (1.26) и тем самым обеспечить большую надежность работы фрикционных элементов. Следовательно, участки фрикционного расширения должны быть возможно длинней.

Зависимость радиальной скорости от положения ротора x упрощает определение сил трения. Пусть в точке x_2 радиальная скорость имеет значение \dot{x}^2 ; потребуем, чтобы в конце x_3 участка фрикционного расширения

скорость уменьшилась, например, на $\frac{1}{4}$: $\dot{x}_3=\frac{3}{4}\dot{x}_2$. Подставив это значение в (1.33) при $x=x_3$, находим соответствующее значение f_2 . На 4-м и 6-м участках фрикционного расширения величины f_4 и f_6 подсчитываются из условий

$$\dot{x}_5 = \frac{1}{2}\dot{x}_4; \quad x_7 = \frac{1}{4}\dot{x}_6.$$

Общее правило можно было бы записать в виде:

$$\dot{x}_{i+1} = \lambda_i \dot{x}_i, \quad i = 2, 4, 6,$$
 (1.35)

где $0 \le \lambda_i \le 1$. Если скорость в конце этапа фрикционного расширения уменьшается в λ_i раз, то кинетическая энергия радиального движения в конце этого этапа уменьшается в λ_i^2 раз. Определяемые из (1.33) значения проверяются на выполнение ограничений (1.32). Если ограничения сверху нарушаются, то пересматриваются длины участков фрикционного разрушения, число разделений на фрагменты и т. д. После выхода ротора в космос можно не вводить участки упругого расширения и использовать

только фрикционное расширение на участке $[x_1, x_k]$ с заданной программой изменения коэффициента $\lambda(x)$ убывания радиальной скорости и энергии радиального движения ротора. Зависимость $\lambda(x)$, через которую выражается величина f(x), должна при этом удовлетворять ограничениям (1.32).

Третий критерий связан с заданной высотой орбиты, от которой зависит удлинение ротора, число и длина фрагментов, их общих частей, число разделений на фрагменты и другие технические требования. Например, для выбранной на рисунке 14 схемы движения принималось, что при первом разделении ротора суммарная длина общих частей фрагментов обеспечивает увеличение его длины на величину

$$\Delta L = L_3 - L_0 = 1600\pi = 5024 \text{ KM}.$$

При этом выполняется условие, по которому в конце первого этапа $[x_0, x_3]$, включающего участки упругого и фрикционного расширения, деформация ротора равна нулю. Такие же изменения длины ротора на втором и третьем этапах, несколько меньше – на четвертом.

Динамика радиального движения ротора на участках $[x_i, x_{i+1}]$, i = 1, 2, 3, 4, 5, 6, 7 описывается уравнениями, аналогичными (1.17), (1.18) на участках упругого расширения (нечетные значения i) и (1.31), (1.33) – на участках фрикционного расширения (четные значения i).

На участках упругого расширения (i = 1, 3, 5, 7):

$$\ddot{x} = F(x,0) - K_i(x - x_i), \quad x_i \le x \le x_{i+1};$$

$$\dot{x}^2 = \dot{x}_i^2 + (x - x_i) \left[\frac{q}{xx_i} \left(\beta \frac{x + x_i}{xx_i} \right) - K_i(x - x_i) \right],$$
(1.36)

где $K_i = \frac{2\pi C_i l}{m_{_{\! P}} R}$, C_i – жесткость ротора на i-м участке. Для i = 1 уравнения

несколько отличаются, имея вид (1.17) и (1.27).

На участках фрикционного расширения (i = 2, 4, 6):

$$\ddot{x} = F(x,0) - f_i, \quad x_i \le x \le x_{i+1};$$

$$\dot{x}^2 = \dot{x}_i^2 + \left(x - x_i\right) \left[\frac{q}{xx_i} \left(\beta \frac{x + x_i}{xx_i} - 2\right) - 2f_i \right],$$