на Земле и в Космосе

Для $x_{\rm k}$ = 1,5 получим $V_{\rm 0}$ = 9,68 км/с, величина μ = $m_{\rm 0}/m_{\rm p}$ при этом должна быть меньше 0,5.

Определим еще орбитальную скорость ротора, используя интеграл (1.6):

$$V_{\text{op6}} = r_k \dot{\varphi}_k = \frac{V_0}{x_k} = \frac{V_1}{\left(x_k\right)^{1/2}}.$$
 (1.44)

Найденное значение $V_{\rm op6}$ может быть проверено с помощью известного для свободного дискретного объекта массы m условия – равенство на круговой орбите радиуса r_k силы притяжения и центробежной силы:

$$mg\frac{R^2}{r_k^2}=m\frac{V_{\rm op6}^2}{r_k},$$

откуда

$$V_{\text{op6}} = \left(\frac{gR^2}{r_k}\right)^{1/2} = \left(\frac{gR}{x_k}\right)^{1/2},$$

что совпадает с (1.44). Если x_k = 1,5, то $V_{\rm op6}$ = 6,45 км/с.

Рассмотрим второе условие (1.40) и определим зависимость $f_8(x)$ при условии (1.41). Разобьем участок $[x_8, x_k]$ точкой x_9 на две части; пусть на первой части f_8 = const, на второй части $f_8(x)$ убывает от f_8 до нуля по линейному закону:

$$f_{8}(x) = \begin{cases} f_{8} = \text{const,} & x_{8} \le x \le x_{9}; \\ f_{8} = \frac{x_{k} - x}{x_{k} - x_{9}}, & x_{9} \le x \le x_{k}. \end{cases}$$
 (1.45)

В этом случае интеграл в (1.39) принимает значения:

$$J(x) = \int_{x_8}^x f_8(x) dx =$$

$$=\begin{cases} f_8(x-x_8), & x_8 \le x \le x_9; \\ f_8(x_9-x_8) + f_8 \frac{x-x_9}{x_k-x_9} \left[x_k - \frac{1}{2}(x+x_9)\right], & x_9 \le x \le x_k. \end{cases}$$

В точке $x=x_k$ получим: $J\left(x_k\right)=\frac{1}{2}f_8\left(x_9+x_k-2x_8\right)$. Пусть $x_9=x_8+400\Delta x$; для x_k найдем $x_k=x_8+485\Delta x$; тогда

$$J(x_k) = \frac{1}{2} f_8 885 \Delta x.$$

Величину f_8 определим из условия, чтобы в точке x_k радиальная скорость уменьшалась до нуля. Согласно (1.39)

$$\dot{x}_{8}^{2} + \frac{q}{x_{k}x_{8}} \left(x_{k} - x_{8}\right) \left(\beta \frac{x_{k} + x_{8}}{x_{k}x_{8}} - 2\right) - 885 f_{8} \Delta x = 0.$$
 (1.46)

Отсюда определяется значение f_8 и зависимость (1.45), удовлетворяющая условиям (1.40) и (1.41) выхода ротора на орбиту x_k .

Таким образом, условия вывода ротора ОТС на орбиту в заданном положении x_k имеют вид (1.42), (1.43). Динамика ротора на завершающем этапе определяется уравнениями (1.38), (1.39) и соотношениями (1.45), (1.46); движение ротора на орбите подчиняется условиям (1.40), (1.41), (1.44).

Критическое значение параметра β может быть увеличено путем подбора значений f_8 , удовлетворяющих условию (1.45) при $\beta \geq 2$ и конечных значениях x_k .

1.10. Задача о выводе ротора ОТС на орбиту. Пример

Зададим значения трех групп параметров задачи.

- 1. Постоянные параметры: радиус R Земли, гравитационное ускорение g на экваторе, начальная плотность ρ_0 атмосферы и др. Для модели стандартной атмосферы приняты $H_{\rm a}=6665~{\rm m}-{\rm пъезометрическая}$ высота усредненной атмосферы с постоянной температурой, $\alpha_{\rm n}=\frac{R}{H_{\rm a}}=995,736-{\rm mokasaten}$ степени экспоненты в формуле Галлея, определяющей убывание плотности с высотой [5,18].
- 2. Параметры, определяющие положение орбиты, величину соответствующей стартовой скорости ротора, его механические свойства, аэродинамические характеристики оболочки и др.:

$$x_k = 1.5$$
; $V_0 = \sqrt{x_k} V_1 = 9.68 \times 10^3 \text{ M/c}$; $m_p = 25 \text{ Kr/m}$;