СТРУННЫЕ

 $F(x') = \frac{l}{R} F_{\text{ymp}}(x') = 2\pi l (C + C_0) \Delta x,$

или

$$f(x') = \frac{F(x')}{(m+m_0)R} = \frac{2\pi l(C+C_0)}{mR(1+\mu_0)} = \frac{K}{1+\mu_0} \Delta x = K_0 \Delta x.$$
 (2.14)

2.3. Радиальное движение системы с остановкой в положении *x* = *x*′

В положении $x=x'=x_0+\Delta x$, где $\Delta x=H_a/R$, H_a — высота плотных слоев атмосферы, ротор и оболочка разделяются на фрагменты с телескопическими соединениями, при этом возможна разгерметизация оболочки. Система совершает радиальное движение со скоростью, определяемой формулой (2.12); фрагменты системы в момент разделения упруго растянуты силами (2.13) и имеют относительную деформацию Δx .

Для предотвращения резкого сжатия растянутых фрагментов необходима компенсация упругих сил, например, силами трения между фрагментами ротора и оболочки. Определим параметр μ_0 , связанную с ним стартовую массу m_0 элемента оболочки и параметры сил трения так, чтобы при радиальном движении ротор и оболочка остановились в заданном положении $x_1 > x'$, имея нулевую деформацию.

Закон изменения сил трения $F_{\rm rp}$ определим, потребовав равенства их упругим силам в момент разделения на фрагменты и обращения в нуль в точке x_1 вместе с упругими силами и деформациями. Исходя из этого, зададим закон изменения $F_{\rm rp}$ на участке $[x',x_1]$ линейной функцией:

$$F_{\text{rp}}(x) = F_{\text{ynp}}(x') \frac{x_1 - x}{x_1 - x'}, \quad x' \le x \le x_1.$$

С уменьшением силы $F_{\rm Tp}$ будет уменьшаться равная ей результирующая сила упругого напряжения фрагментов ротора и оболочки, а также их упругая деформация, обращаясь в нуль в точке x_1 . В этой точке равны нулю радиальная скорость и радиальное ускорение. Дальнейшее движение системы происходит в обратном направлении от положения x_1 в направлении x_0 , а затем обратно. При таком колебательном движении часть энергии расходуется на преодоление сил сопротивления атмосферы и работу сил трения, при этом амплитуда колебаний уменьшается.

Чтобы не допустить обратного движения в момент остановки системы в точке x_1 и чтобы радиальное ускорение изменило знак, и система возобновила радиальное движение в сторону от Земли, предполагается сброс отдельных фрагментов оболочки.

При этом ввиду отсутствия деформаций и напряжений ни ротор, ни оставшиеся на нем и поддерживаемые электромагнитными силами фрагменты оболочки не изменяют своих размеров и формы.

Существует возможность вакуумную оболочку выполнить многослойной и сброс осуществлять либо целыми слоями, либо отдельными частями этих слоев, при этом отпадают многие сложные вопросы функционирования системы «ротор – оболочка», например, вопрос о локальных прогибах или изменении радиуса кривизны ротора в местах прохождения через оставшиеся фрагменты оболочки, о взаимодействиях ротора и фрагментов оболочки в точках входа и выхода из фрагмента и т. д.

Для простоты принимаем величину участка [x', x] равной $\Delta x = x_1 - x'$. Равнодействующая сил напряжения элемента, направленная по радиусу к центру Земли, определяется аналогично (2.14):

$$f(x) = \frac{F_{\text{TP}}(x)}{R(m+m_0)} = \frac{K}{1+\mu_0}(x_1-x) = K_0(x_1-x).$$

Дифференциальное уравнение радиального движения элемента системы на участке [x',x] имеет вид (2.5), но силы сопротивления атмосферы не учитываются:

$$\ddot{x} = \frac{q}{x^2} \left(\frac{\beta_0}{x} - 1 \right) - K_0 \left(x_1 - x \right), \quad x' \le x \le x_1.$$

Здесь использованы обозначения (2.6). Интеграл имеет вид:

$$\dot{x}^{2}(x) = \dot{x}^{2}(x_{1}) + (x - x') \left\{ \frac{q}{xx'} \left(\beta_{0} \frac{x + x'}{xx'} - 2 \right) - K_{0} \left[2x_{1} - (x + x') \right] \right\}, \quad (2.15)$$

где $\dot{x}(x')$ определяется формулой (2.12).

Если $\dot{x}(x_1)$ = 0, то в точке x_1 обращается в нуль правая часть выражения (2.15). Подставляя сюда $\dot{x}(x')$, определяемое формулой (2.12), получим после преобразований

$$\mu_0 = \frac{\beta A_1 - A_2 - \frac{K}{q} A_3}{A_2 - \beta_e A_1}; \tag{2.16}$$