ТРАНСПОРТНЫЕ СИСТЕМЫ >>

$$A_3 = J_3(x') + \frac{\Delta x^2}{2}.$$

Соотношение (2.16) представляет собой нелинейное уравнение для определения μ_0 , так как μ_0 входит в правую часть через величину $p_0 = \frac{p}{1+\mu_0}$ в показателях подынтегральных экспонент в выражениях для $J_1(x')$, $J_2(x')$, $J_3(x')$.

Возможна следующая итерационная процедура решения уравнения (2.16). Величина μ_0 близка к критическому значению $\mu_{\rm kp}=m_{\rm kp}/m$, когда система в исходном положении не может начать радиальное движение. Подставляя в правую часть (2.16) $\mu_0 \approx \mu_{\rm kp}$, получим уточненное значение μ_{0i} , которое снова подставляем в правую часть и т. д. Процесс продолжается, пока модуль разности μ_{0i} и μ_{0i-1} не станет меньше некоторой заданной малой положительной величины ϵ :

$$\left|\mu_{0i}-\mu_{0i-1}\right|\leq \epsilon.$$

Величина ε определяется из допустимой погрешности определения m_0 и, соответственно, M_0 – массы всей оболочки – по отношению к массе элемента ротора m и массе всего ротора $M_{\rm p}$: $\mu_0=m_0/m=M_0/M_{\rm p}$. Например: определяя M_0 с точностью до 1 тонны при $M=10^6$ тонн, получим $\varepsilon=10^{-6}$. Вычисление μ_0 на ЭВМ показало очень быструю сходимость процесса итераций. В таблице 2.1 в качестве примера приведены вычисления для $V_0=10,612$ км/с, m=25 кг, $\mu_{\rm kp}=0,8052$. Начальное значение $\mu_0=0,8037$, на 4-й итерации получено решение с требуемой точностью: $\mu_0=0,7656$, $m_0=19,1398$ кг.

Таблица 2.1 – Итерационная процедура определения параметра μ_α

	9
i	μ_{0i}
1	0,80370496
2	0,76561654
3	0,76559303
4	0,76559301

По физическим условиям начальный этап $[x_0, x_1]$ радиального движения системы разделяется на два участка.

На участке $[x_0, x']$, где имеется плотная атмосфера, оболочка должна быть герметичной; кроме гравитационных сил учитываются упругое напряжение ротора – оболочки и сопротивление атмосферы; начальная кинетическая энергия системы расходуется на преодоление этих сил.

На втором участке $[x',x_1]$ действием атмосферы пренебрегается; в точке x' происходит разделение ротора и оболочки на фрагменты; для предотвращения резкого сжатия упруго растянутых ротора и оболочки вводятся силы трения между раздвигающимися фрагментами; кинетическая энергия системы расходуется в основном на преодоление сил тяготения.

Таким образом, часть начальной кинетической энергии теряется на этапе $[x_0,x_1]$ на преодоление сопротивления атмосферы, а также упругих и фрикционных сил и на подъем самой системы. Можно определить такую начальную массу m_0 элемента оболочки, чтобы радиальное движение тормозилось до остановки в точке x_1 . Для возобновления дальнейшего движения часть Δm_1 массы элемента оболочки должна быть сброшена; величина Δm_1 определяется условиями движения на следующем этапе.

2.4. Движение ротора и оболочки на последующих этапах

Следующий этап радиального движения системы в открытом космосе происходит на отрезке $[x_1, x_2]$, где $x_2 > x_1$ – некоторое заданное значение. Если начальный этап назвать нулевым, то данный этап будет первым.

Определим такую массу $\Delta m_{\rm o}$ сбрасываемой в точке $x_{\rm 1}$ части элемента оболочки, чтобы, возобновив радиальное движение и подняв оставшуюся массу оболочки $m_{\rm o}^{(1)}=m_{\rm o}-\Delta m_{\rm o}$, ротор с оболочкой остановились бы в положении $x_{\rm o}$.

Замечание 1. Наиболее рационален равномерный по всей длине сброс частей оболочки. Этот способ достигается, если оболочка многослойная и сбрасывается либо весь слой массы $\Delta m_{\rm o}$, либо часть слоя, допустим нижняя, такой же массы. В случае сброса отдельных фрагментов оболочки рассматривается усредненное по длине оболочки значение массы $\Delta m_{\rm o}$ сбрасываемых частей, приходящихся на выделенный элемент.

Замечание 2. На данном и последующих этапах движения системы в открытом космосе можно ввести силы трения между фрагментами ротора, а также и между фрагментами оболочки, если она многослойная и не нарушается целостность формы ротора. Однако это усложняет