Положительного ускорения в точке x_{n-1} можно добиться последним сбросом части оболочки. При этом сбрасываемая и оставшаяся массы должны обеспечить обращение в нуль составляющей ускорения от действия центробежной и гравитационной сил. Обозначим массу оставшейся части элемента оболочки $m_{\rm o}^{(n-1)}$ и введем параметр $\mu_{(n-1)}=m_{\rm o}^{(n-1)}/m$, тогда условие принимает вид:

$$\frac{\beta_{n-1}}{x^n} - 1 = 0, (2.26)$$

где $\beta_{n-1}=rac{eta+\mu_{n-1}eta_e}{1+\mu_{n-1}}.$ Заметим, что $m_{_{
m o}}^{(n-1)}$ – усредненное по длине ротора

значение остаточной массы оболочки, приходящейся на элемент ротора исходной массы $m_{\rm p}$, т. е. $m_{n-1}=M_{\rm o}^{(n-1)}\,l_{n-1}/L_{n-1}$, где $M_{\rm o}^{(n-1)}$ — остаточная масса оболочки, $l_{n-1}=x_{n-1}l$, $L_{n-1}=x_{n-1}L$ — длина соответственного элемента и всего ротора в положении x_{n-1} .

Решая (2.26) относительно $\beta = V_0^2 / V_1^2$, получим:

$$\beta = (1 + \mu_{n-1}) x_n - \mu_{n-1} \beta_e. \tag{2.27}$$

Отсюда находим исходную окружную скорость ротора V_0 , необходимую для обеспечения выхода системы в положение x_n с подъемом остаточной массы элементов оболочки m_{n-1} :

$$V_0 = V_1 \left[\left(1 + \mu_{n-1} \right) x_n - \mu_{n-1} \beta_e \right]^{1/2}. \tag{2.28}$$

Формулы (2.27) и (2.28) являются обобщением формул (1.42) и (1.43) главы 1 на случай подъема инертной массы оболочки $m_{\scriptscriptstyle n-1}$ = $\mu_{\scriptscriptstyle n-1} m$, совпадая с ними при $\mu_{\scriptscriptstyle n-1}$ = 0.

Радиальная скорость на последнем этапе гасится составляющей ускорения от сил трения между фрагментами ротора в их телескопических соединениях. Пусть натяжения элемента ротора от сил трения, приложенные на концах элемента, равны силе $F_{\rm rp}(x)$, зависящей от положения элемента. Равнодействующая этих сил, приложенная в центре элемента и направленная по радиусу к центру Земли, определяется, как в главе 1:

$$F(x) = F_{\text{Tp}}(x)\frac{l_{n-1}}{r_{n-1}} = F_{\text{Tp}}(x)\frac{l}{R},$$

или

СТРУННЫЕ

$$f(x) = F_{\text{Tp}}(x) \frac{l}{mR^2 \left(1 + \mu_{n-1}\right)}.$$
 (2.29)

Дифференциальное уравнение радиального движения элемента системы на последнем этапе имеет вид:

$$\ddot{x} = \frac{q}{x^2} \left(\frac{\beta_{n-1}}{x} - 1 \right) - f(x), \quad x_{n-1} \le x \le x_n.$$

Для обращения в нуль радиальной скорости используем линейную зависимость $F_{\rm rp}(x)$ и f(x) от координаты x. Пусть некоторая внутренняя точка x_* этапа $[x_{n-1},x_n]$, которую можно задать произвольно, делит этот этап на части $\Delta x_1 = x_* - x_{n-1}$ и $\Delta x_2 = x_n - x_*$. Тогда f(x) представим в виде:

$$f(x) = \begin{cases} f_* \frac{x - x_{n-1}}{\Delta x_1}, & x_{n-1} \leq x \leq x_*; \\ f_* \frac{x_n - x}{\Delta x_2}, & x_* \leq x \leq x_n, \end{cases}$$

где постоянная f_* – наибольшее значение f(x) в точке x_* . При этом f(x) на концах этапа обращается в нуль, и в положении x_n равно нулю полное радиальное ускорение \ddot{x} .

Радиальная скорость системы определяется из соотношения

$$\dot{x}^2 = \frac{q}{xx_{n-1}} \left(x - x_{n-1} \right) \left(\beta_{n-1} \frac{x + x_{n-1}}{xx_{n-1}} - 2 \right) - a(x); \tag{2.30}$$

$$a(x) = \begin{cases} \frac{f_*}{2\Delta x_1} (x - x_{n-1})^2, & x_{n-1} \le x \le x_*; \\ \frac{f_*}{2} \left[\Delta x_1 + \frac{(x - x_*)(2x_n - x - x_*)}{\Delta x_2} \right], & x_* \le x \le x_n. \end{cases}$$
 (2.31)

В конечном положении x_n радиальная скорость \dot{x} равна нулю. Отсюда, учитывая (2.26), (2.30) и (2.31), найдем:

$$f_* = 2q \frac{X_n - X_{n-1}}{X_{n-1}^2 X_n},$$