СТРУННЫЕ

отмеченных вертикальных отрезков, должны подчиняться правилу сохранения моментов инерции (2.34). Уравнение этой прямой имеет вид:

$$m(x) = m + m_0 - \left(m_0 - m_0^{(n)}\right) \frac{x - x_0}{x_0 - x_0}$$
 (2.35)

и представляет собой закон линейного изменения массы оболочки при непрерывном сбросе ее частей. Эта линия аппроксимирует ступенчатый график изменения массы оболочки при дискретном сбросе ее частей и характеризует изменение масс оболочки в зависимости от положения системы. Соотношения (2.28), (2.32) и (2.33) использованы при составлении таблицы 2.2, в которой показана зависимость начальных и конечных параметров системы.

Для заданного положения промежуточной орбиты x_n = 1,5 и шести указанных в таблице значений коэффициента μ_n остаточной массы оболочки определены следующие параметры: μ_0 – коэффициент начальной массы оболочки; $\mu_{\rm kp}$ – коэффициент критической массы оболочки; $\Delta\mu$ = μ_0 – μ_n – коэффициент изменения массы оболочки; η_1 = $\Delta\mu/\mu_n$ – отношение сброшенной массы к остаточной; η_2 = $\Delta\mu/\mu_0$ – отношение сброшенной массы к начальной; V_0 – необходимая начальная скорость ротора; $\beta = V_0^2/V_1^2$ – коэффициент орбиты. Материальный КПД системы во всех шести случаях одинаков:

$$\eta = \frac{1 + \mu_n}{1 + \mu_0} = \frac{x_0}{x_n} = \frac{2}{3}.$$

Таблица 2.2 – Зависимость начальных и конечных параметров системы

μ_n	0,1	0,5	1,0	1,5	2,0	3,0
μ_0	0,65	1,25	2,0	2,75	3,5	5,0
$\mu_{\kappa p}$	0,693	1,309	2,074	2,852	3,609	5,147
Δμ	0,55	0,75	1,0	1,25	1,5	2,0
η_1	5,5	1,5	1,0	0,83	0,75	0,67
η_2	0,846	0,6	0,5	0,455	0,429	0,4
V_0 , KM/C	10,15	11,85	13,675	15,288	16,746	19,335
γ, кВт∙ч/кг	13,008	13,002	12,987	12,985	12,983	12,981
β	1,6497	2,2483	2,9966	3,7449	4,4932	5,99

Одинаковым оказывается также расход энергии на подъем 1 кг массы полезного груза (без учета потерь в ТЛС):

$$\gamma = \frac{K_*}{m + m_o^{(n)}} = \frac{V_0^2}{2(1 + \mu_n)} \approx \frac{V_1^2}{2} x_n,$$

где K_* – кинетическая энергия элемента системы; V_0 – приближенное значение (2.28), при котором $\beta_e \approx 0$. С изменением орбиты удельный расход энергии меняется пропорционально координате x_n .

Из таблицы 2.2 следует, что некоторые величины растут с возрастанием остаточной массы, но медленно; к ним относится начальная и критическая масса, коэффициент изменения массы, начальная скорость ротора V_0 и коэффициент орбиты. Отношения сброшенной массы к остаточной и начальной массам оболочки убывают, при этом первая величина – значительно. Таким образом, массовые характеристики улучшаются с увеличением остаточной массы оболочки, а удельный расход энергии, подсчи-

танный по формуле $e = \frac{V_0^2}{2(1+\mu_n)}$ остается почти постоянным.

При выходе на промежуточную орбиту x_n ротор и оболочка имеют угловые скорости вращательного движения:

$$\dot{\varphi}_n = \frac{\omega_3}{\chi_n^2}; \quad \dot{\psi}^2 = \frac{\omega_3}{\chi_n^2}. \tag{2.36}$$

Соответствующие линейные скорости:

$$V_n = \dot{\varphi}_n x_n R = \frac{V_0}{x_n}; \quad V_{en} = \dot{\psi}_n x_n R = \frac{V_e}{x_n}.$$
 (2.37)

Учитывая формулу (2.28) для V_0 , получим:

$$V_n = \frac{V_1}{X_n} \Big[(1 + \mu_n) X_n - \mu_n \beta_e \Big]^{1/2},$$

или, пренебрегая малой величиной β_α:

$$V_n \approx V_1 \left(\frac{1 + \mu_n}{x_n}\right)^{1/2}.$$
 (2.38)