СТРУННЫЕ

Отметим некоторые особенности дальнейшего исследования.

- 1. Не обсуждаются вопросы технической реализуемости проекта ОТС в конкретных условиях той или иной планеты: создания эстакады, сборки ротора и его запуска, устройства ротора и его свойств.
- 2. Не рассматривается этап движения ротора в оболочке в плотных слоях атмосферы, чтобы не усложнять решаемую задачу о маневрировании. Исследование начинается с момента выхода ротора из атмосферы и сброса всей оболочки. При этом полагаем, что радиальная скорость ротора в данный момент равна нулю и ротор не имеет упругих деформаций растяжения.
- 3. Примеры решения задачи о маневрировании в условиях Урана и Сатурна имеют иллюстративный характер, при этом не учитываются физические свойства планет и их атмосферы. Рассматриваются только системы колец и спутников в качестве примеров препятствий, которые преодолевает ротор при выходе на заданную орбиту.

3.2. Дифференциальные уравнения движения ротора ОТС вне экваториальной плоскости

Движение ротора определяется по отношению к инерциальной системе отсчета с началом в центре планеты, при этом ось Z направлена вдоль оси вращения планеты и ротора, оси X, Y – в плоскости Π_1 экватора. Влияние Солнца, других планет, крупных спутников, а также препятствий, вблизи которых проходит ротор, не учитываются.

В начальном состоянии ротор вращается с угловой скоростью $\omega_{\rm p0}$ вокруг оси Z в плоскости $\Pi_{\rm 0}$, параллельной $\Pi_{\rm 1}$ и отстоящей от нее на расстоянии $z_{\rm 0}=R{\rm sin}\psi_{\rm 0}$, где R – радиус сферы, ограничивающей плотную атмосферу, $\psi_{\rm 0}$ – начальное значение угла ψ , определяющего движение плоскости ротора Π относительно плоскости $\Pi_{\rm 1}$ экватора (рисунок 24). Начальный радиус орбиты ротора $r_{\rm p0}=R{\rm cos}\psi_{\rm 0}$, начальная линейная скорость вращательного движения $V_{\rm 0}=\omega_{\rm 0} r_{\rm p0}=\omega_{\rm 0} R{\rm cos}\psi_{\rm 0}$.

Как уже отмечено, начальное состояние ротора и значения R, ω_0 и V_0 соответствуют моменту его выхода из атмосферы и сброса всей оболочки. Если планета не имеет атмосферы, то стартовое состояние (также без оболочки) соответствует положению на широтной эстакаде.

В качестве модели ротора принимаем тонкое кольцо с однородными механическими свойствами, разделяющееся на фрагменты с телескопическими соединениями в момент старта.

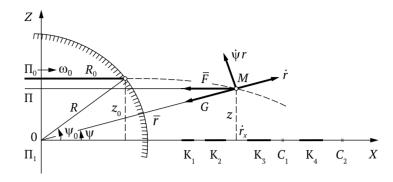


Рисунок 24 – Схема движения точки M пересечения траектории движения ротора с плоскостью X0Z; Π_0 и Π – стартовая и текущая плоскости движения ротора

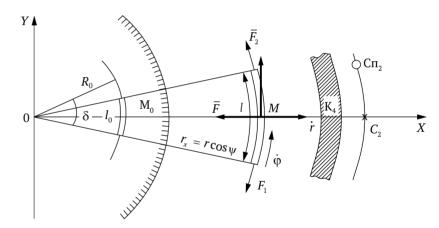


Рисунок 25 – Схема движения элемента ротора в плоскости Π ; кольцо K_4 и спутник Cn_2 – в плоскости экватора Π_4

Схема третьего (фрикционного) режима движения ротора, некоторых действующих сил и препятствий показана на рисунках 24 и 25. На рисунке 24 представлены две составляющие движения точки M пересечения ротора с плоскостью X0Z: радиальное движение и движение плоскости Π по отношению к плоскости Π_1 . В дальнейшем точку M будем называть характерной точкой движения ротора.

Пусть отрезки K_1 , K_2 , ..., K_n – следы (выделены жирным) пересечения с плоскостью X0Z препятствий в виде колец или ранее выведенных роторов; длина отрезков учитывает возможные эксцентриситеты орбит препятствий. Звездочки C_1 , C_2 , ..., C_n – точки пересечения с той же плоскостью орбит спутников или искусственных дискретных объектов; с учетом эксцентриситетов