СТРУННЫЕ

Исследуем движение ротора по углу ψ , описываемое соотношениями (3.21), (3.12) и (3.13).

В случае колебательного движения при $\beta < \beta_{\rm kp}$ в пределах от $x_0 = 1$ до $x_{**} = \frac{2}{2-\beta}$ угол ψ изменяется согласно (3.21) в пределах от ψ_0 до $\psi_{**} = -\psi_0$.

Угловая скорость $\dot{\psi} = \psi' \dot{x}$ в крайних точках обращается в нуль, что следует из того, что $\dot{x}(x_0) = \dot{x}(x_{**}) = 0$; наибольшее по модулю значение достигается в положении $x_* = \beta$:

$$\dot{\psi}(x_*) = -\frac{\psi_0}{\beta} \left(\frac{q}{\beta}\right)^{1/2}.$$

Угловое ускорение $\ddot{\psi} = \psi'' \dot{x}^2 + \psi' \ddot{x}$ после подстановки производных $\psi''(x)$ и $\psi'(x)$ принимает вид:

$$\ddot{\psi}(x) = \frac{\psi_0 \beta}{\beta - 1} \frac{2\dot{x}^2 - \ddot{x}x}{x^3}.$$

В точках $x_0 = 1$, $x_* = \beta$, $x_{**} = \frac{\beta}{2 - \beta}$ имеет, соответственно, значения:

$$-\psi_0 \beta q$$
; $2\psi_0 q(\beta-1)^2/\beta^4$; $\psi_0 q(2-\beta)^4/\beta^3$.

В случаях $\beta = \beta_{\kappa p}$ и $\beta > \beta_{\kappa p}$ при удалении ротора на бесконечность угол ψ имеет предельные значения:

$$\psi_1\left(\infty\right) = -\frac{\psi_0}{\beta_{\kappa n} - 1} = -\psi_0; \quad \psi_2\left(\infty\right) = -\psi_0 \frac{1}{1 - \beta},$$

при этом угловая скорость и угловое ускорение обращаются в нуль. Введем переменную

$$z = Rx\sin\psi, \tag{3.24}$$

представляющую собой натуральное значение высоты ротора над плоскостью экватора. Ограничиваясь малыми значениями ψ и линеаризуя (3.24) по ψ , получим с учетом (3.21):

$$z = \frac{\psi_0 R}{\beta - 1} (\beta - x). \tag{3.25}$$

Величина z является также аппликатой точки M пересечения ротора с плоскостью X0Z (рисунки 24 и 26), а зависимость (3.25) — уравнением траектории этой точки. Учитывая малость угла ψ , эта траектория представляет собой прямую с началом в точке M_0 , пересекающую плоскость экватора в единственной точке $x_* = \beta$, где проходит постоянная орбита ротора (рисунок 26). При свободном движении ротора значения $\dot{x}, \dot{\psi}, \ddot{\psi}$ в точке x_* не равны нулю, следовательно, точка M проходит положение x_* без остановки. В случае колебательного движения точка M движется вдоль прямой до положения M_{**} с координатой x_{**} , определяемой согласно (3.22), после чего начинается обратное движение в направлении исходной точки M_0 .

При движении в критических случаях $\beta \geq \beta_{\text{кр}}$ точка M удаляется вдоль прямой $M_0 M_{**}$ на бесконечность.

Движение самого ротора представляет собой колебания, происходящие на поверхности конуса с образующей $M_0M_*M_*$, когда ротор то сползает «вниз», то поднимается «вверх». При этом ротор вращается с угловой скоростью $\dot{\phi}$ вокруг оси конуса 0Z, то уменьшая, то увеличивая ее величину. В критических случаях колебательное движение вырождается в неограниченном сползании по конусу «вниз». В случае расположения стартовой позиции ротора в южном полушарии планеты сползание сменяется восхождением по конусу в северное полупространство по отношению к плоскости экватора.

Во всех случаях положение точки x_* должно быть выбрано из условия отсутствия каких-либо препятствий в ее окрестности, точнее, в соответствующей кольцевой части плоскости Π_1 . Выбор $x_* = \beta$ определяет и направление дальнейшего движения ротора со стартовой позиции M_0 через M_* по отношению к экваториальной плоскости. Эта траектория влияет на условие бесконтактного прохождения мимо крупных естественных спутников, расположенных в этой плоскости, а также на условие минимальности корректирующих импульсов при движении фрагментов ротора к назначенной цели.

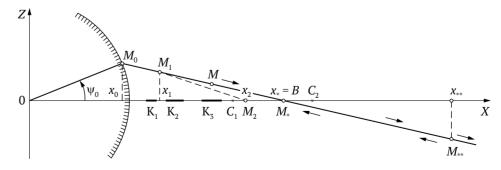


Рисунок 26 — Схема движения характерной точки M. В режиме I — сплошная линия $M_{_{1}}M_{_{2}}M_{_{3}}$, в режиме III — штриховая линия $M_{_{1}}M_{_{2}}$; в режиме III — участок $M_{_{2}}M_{_{3}}$