Νº π/π	Радиус <i>R_i,</i> км	Относительный радиус x_i	Разность высот $\Delta x = x_i - x_{i-1}$	
1	41 600	1,58777	0,58777	
2	42 000	1,60306	0,01529	
3	42 400	1,61831	0,01525	
4	44 600	1,70227	0,08396	
5	45 600	1,74044	0,03817	
6	47 200	1,80151	0,06107	
7	47 600	1,81678	0,01527	
8	48 400	1,84731	0,03053	
9	50 200	1,91601	0,06870	
10	51 800	1,97708	0,06107	

Таблица 3.2 – Радиусы орбит и взаимное положение первых 11 спутников Урана

Νº π/π	Радиус <i>R_i,</i> км	Относительный радиус <i>х_і</i>	Разность высот $\Delta x = x_i - x_{i-1}$	Выбранные значения x_2, x_4
1	49 750	1,89846	0,05115	
2	53 770	2,05187	0,07479	
3	59 160	2,25755	0,20568	
4	61 770	2,35714	0,09959	
5	62 650	2,39072	0,03358	
6	64 630	2,46628	0,07656	
7	66 100	2,52238	0,05610	
8	69 930	2,66853	0,14615	
9	75 200	2,86963	0,20110	
10	86 000	3,28176	0,41213	<i>x</i> ₂ = 4,0
11	129 000	4,92367	1,64191	<i>x</i> _* = 4,6

Примечания к таблицам 3.1 и 3.2.

Задаем орбиту в этом промежутке в положении $x_* = \beta = 4,6$; т. е. примерно на 2/3 расстояния между 10-м и 11-м спутниками.

Стартовая скорость ротора, необходимая для достижения заданной орбиты:

$$V_0 = V_1 \sqrt{\beta/\cos \psi_0} = 25,58 \times 10^3 \text{ m/c} = 35,58 \text{ km/c},$$

где $\psi_0=0$,1 — значение угла, определяющего положение стартовой плоскости Π_0 ротора по отношению к экватору; $V_1=\left(qR\right)^{1/2}=16$,5 км/с, $V_2=V_1\sqrt{2}=23$ км/с — соответственно, первая и вторая космические скорости на Уране; g=10,4 м/с² — ускорение силы тяжести на поверхности Урана; R=2,62 × 10^7 м — радиус экватора.

Для точки M_2 , где ротор должен выйти в экваториальную плоскость, погасив при этом угловое движение по ψ , принимаем x_2 = 4,0, т. е. за пределами группы 10 колец и 10 малых спутников. Для точки M_1 , где начинается второй этап движения с участием внешних диссипативных сил, принимаем x_1 = 1,9, т. е. на участке между восьмым и девятым кольцами (таблица 3.1).

Таким образом, задаваемая схема движения ротора такова. Начиная движение из положения M_0 на поверхности Урана, определяемом широтой $\psi_0=0,1$, ротор на участке $[x_0,x_1]$ совершает свободное движение. На участке $[x_1,x_2]$ совершается управляемое движение во втором режиме с целью погасить угловое движение по ψ . На этих двух участках ротор проходит над плоскостью экватора на высоте $z=R\psi x$, преодолевая тем самым системы всех 10 колец и 10 малых спутников Урана.

На последнем участке $[x_2, x_*]$ ротор движется в плоскости экватора. Здесь с помощью фрикционных сил происходит гашение радиальной части движения и выход на постоянную орбиту $x_* = \beta = 4,6$.

Исходные данные задачи, некоторые результаты, графики и их анализ приводятся ниже (п. 3).

2. Из планет-гигантов Солнечной системы Сатурн имеет наиболее внушительную и сложную систему колец и спутников. Система главных колец D, C, B, A, F, G, E фактически состоит из большого числа отдельных, более узких, а также множества промежуточных невидимых с Земли колец и составляет почти сплошное кольцо, простирающееся едва ли не от атмосферы планеты до расстояния 8R где $R = 6.01 \times 10^7$ м – радиус Сатурна. В относительных величинах R./R это соответствует интервалу [1; 8].

В промежутках между отдельными кольцами, составляющими внешние системы колец G и E, движутся 12 малых спутников Сатурна. Первый большой спутник Рея, находящийся за пределами колец, имеет относительный радиус орбиты x = 8.5; затем следует большой, шириной $\Delta x = 11.5$,

^{1.} Разность $\Delta x = x_1 - x_0 = 0,58777$ представляет собой относительное расстояние первого кольца от поверхности планеты.

^{2.} Первый спутник находится между восьмым и девятым кольцами, второй – выше десятого; величина Δx для них представляет собой разность высот восьмого кольца и первого спутника, десятого кольца и второго спутника.