Диссипативная сила P(x), управляющая движением по углу ψ и высоте z и приходящая на единицу длины ротора, имеет наибольшие значения около 300 H и меняет знак в положении x=2,5. Это является, очевидно, следствием заданного закона (3.28) изменения угла ψ ; возможно, что при другом законе сила P(x) будет знакопостоянна, монотонно уменьшая свои значения.

Фрикционная диссипативная сила $F_{\rm Tp}(x)$, представляющая собой сумму сил трения и равная силе натяжения фрагмента, изменяется согласно (3.33) линейно, принимая, в общем случае, большие значения. Причина этого – очень малая кривизна элементов ротора, поэтому силы натяжения, направленные по касательным в конечных точках элемента, имеют очень малую величину равнодействующей, которая направлена по радиусу и должна тормозить радиальное движение. Чтобы уменьшить величину $F_{\rm Tp}$, можно вводить эту силу с момента старта ротора в положении x_0 , а также использовать гравитационное торможение (подъем и поэтапное сбрасывание частей оболочки) и другие диссипативные силы, в том числе внешние.

На участке свободного расширения ротора $[x_0, x_1]$ угловое ускорение $\ddot{\psi}$ меняется от начального отрицательного значения $-1,83 \times 10^{-7} \, \mathrm{c}^{-2}$ до максимального положительного $0,37 \times 10^{-7} \, \mathrm{c}^{-2}$ и затем начинает убывать. При включении в точке x_1 диссипативной силы P(x) ускорение $\ddot{\psi}$ изменяется скачком, принимая отрицательные значения и ускоряя движение плоскости ротора к экватору. После изменения знака ускорения в точке x=2,2 движение тормозится и погашается в точке x_1 .

Время движения t имеет интервалы, на которых скорость значительно увеличивается в начале движения и в конце движения, когда она начинает уменьшаться; между этими интервалами время t изменяется линейно в зависимости от радиального расстояния x, что является следствием почти постоянной радиальной скорости. Общее время движения к орбите в положении $x_* = 4,6$, что соответствует радиальному перемещению 94 000 км, достигает 111 мин при средней скорости движения 14 км/c.

Схема движения ротора в условиях Сатурна аналогична, отличаясь числовыми значениями характеристик. Например, общее время движения равно 430 мин, почти в четыре раза превышая указанную выше величину; радиальное перемещение составляет 840 000 км при средней скорости движения 32 км/с.