В качестве верхней оценки для $r_{0.0}$ используем значение

$$r_{_{\infty}}\left(t\right)=R_{_{
m p}}+2arepsilon_{_{
m 2}}\left(rac{\mu t}{
ho}
ight)^{1/2}$$
 ,

где ε_2 – аргумент функции ошибок Гаусса, при котором она принимает значение ε_1 .

При этом учитываем, что для любого момента времени при прочих равных параметрах

$$r_{0\infty}(t) < r_{\infty}(t)$$
.

Представление о радиусе области течения воздуха r_{∞} и о его изменении со временем можно получить из таблицы 5.1, в которой заданы два значения скорости звука $v(t,\,r_{\infty})$: 340,3 м/с (ε_1 = 0,034, ε_2 = 1,49) и практически нулевой по аэрокосмическим масштабам скорости 2,36 м/с (ε_1 = 0,000236, ε_2 = 2,6). Расчеты проводились при $R_{\rm p}$ = 0,05 м и параметрах воздуха μ = 13,9 × 10⁻⁹ Па·с и ρ = 0,08 кг/м³, соответствующих температуре 4273 °К.

Положим $R_n \approx r$, тогда соотношение (5.11) можно представить в виде:

$$v(t,r) = V \operatorname{erfc} \left[\frac{r - R_{p}}{2} \left(\frac{\rho}{\mu t} \right)^{1/2} \right]. \tag{5.12}$$

Силы трения поверхности ротора о воздух в расчете на 1 м его длины удобно вычислить по формуле:

$$F_{\rm Tp} = -2\pi R_{\rm p} \, \mu \frac{\partial v}{\partial r} \bigg|_{r = R_{\rm p}}.$$

Подставляя сюда (5.12), получим:

$$F_{\rm Tp} = 2R_{\rm p} \left(\frac{\pi\mu\rho}{t}\right)^{1/2}.$$

Таблица 5.1 – Изменение во времени радиуса области течения воздуха

<i>v(t, r</i> _∞), м/c	<i>r</i> ∞, M		
	<i>t</i> = 0,1 c	<i>t</i> = 1 c	<i>t</i> = 10 c
340,3	0,089	0,175	0,444
2,36	0,119	0,267	0,736

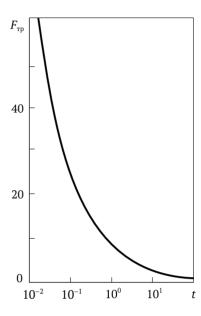


Рисунок 32 – Зависимость удельной силы трения поверхности ротора о воздух от времени

В качестве примера на рисунке 32 представлена зависимость $F_{\rm rp}$ от времени, построенная при $R_{\rm p}=0.05~\rm m$ для $\mu=1.819\times10^{-5}~\rm H\cdot c$, $\rho=1.166~\rm kr/m^3$, соответствующих температуре воздуха 293 °К. Как показали вычисления, выбор другого, большего значения температуры воздуха приводит к снижению расчетного значения $F_{\rm rp}$, поэтому зависимость на рисунке 32 представляет собой верхнюю оценку $F_{\rm rp}$.

5.4. Приближенный расчет температурного поля в окрестности поверхности ротора при отсутствии процесса сублимации защитного покрытия

Температурное поле в окрестности поверхности ротора при отсутствии процесса сублимации можно определить, используя уравнение (5.3). С учетом (5.12) это уравнение после некоторых преобразований запишем в следующем виде:

$$C\rho \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda r \frac{\partial T}{\partial r} \right) + \frac{V_z^2 \rho}{\pi t} \exp \left[-\frac{\rho \left(r - R_p \right)^2}{2\mu t} \right]. \tag{5.13}$$