на Земле и в Космосе

СТРУННЫЕ

В таблице 5.3 в качестве примера приводятся рассчитанные по (5.24) значения $T_{\rm w}$ для тех же моментов времени t и температуры $T_{\rm 0}$, что и в таблице 5.2, построенной на основе решения уравнения (5.13).

Как следует из сравнения таблиц 5.2 и 5.3, формула (5.24) дает завышенные значения $T_{\rm w}$ по сравнению с более точными результатами, полученными при решении уравнения (5.13). Наибольшее различие, как и следовало ожидать, отмечается в моменты времени, близкие к начальному. В дальнейшем эти различия сглаживаются, и уже через 0,06 с результаты, получаемые по формуле (5.24) и при точном решении уравнения (5.13), различаются на 10-15 %. Формула (5.24) дает верхнюю оценку $T_{\rm w}$.

Нижнюю оценку T_w можно получить из (5.24) посредством предельного перехода при $t \to \infty$:

$$T_{w, \min} = \left(T_{\infty}^4 + \frac{\mu V_z^2}{\pi \varepsilon \sigma R_{\rm p}}\right)^{1/4}$$
 (5.25)

Такая температура должна установиться на поверхности ротора при его неограниченном во времени вращении в слое атмосферы. Если вязкость воздуха принять соответствующей температуре T_0 = 293 °K, то из (5.25) находим $T_{\rm w,\,min}$ = 803 °K. Если же T_0 = 3000 ÷ 5000 °K, то нижняя оценка температуры поверхности ротора $T_{\rm w,\,min}$ = 1180 ÷ 1300 °K. При T_0 = 10⁴ °K, соответствующей температуре воздуха в пике (рисунок 37), из (5.25) находим $T_{\rm w,\,min}$ = 1490 °K.

5.6. Квазистационарный расчет динамики испарения сублимирующего покрытия тепловой защиты ротора

Температура поверхности ротора, как следует из полученных выше результатов, для $t \ge 0.05$ с достигает 1500-2000 °К. Для большинства материалов такие, а тем более возникающие в начальный момент времени температуры достаточно высоки, поэтому представляет интерес рассмотреть активную тепловую защиту ротора с помощью сублимирующих покрытий.

В этом случае радиус $R_{\rm p}$ поперечного сечения ротора не является постоянной величиной, так как по мере испарения защитного покрытия он будет уменьшаться. Пусть $R_{\rm p}$ = $R_{\rm p0}$ – начальное значение радиуса.

В квазистационарном случае уравнение теплопереноса (5.13) в безразмерном виде принимает форму:

 $\frac{\partial}{\partial r'} \left(r' \frac{\partial T'}{\partial r'} \right) = -\frac{A_6 r'}{t} \exp \left[-\frac{\left(r' - R_r' \right)^2}{A_2 t} \right]. \tag{5.26}$

Здесь приняты обозначения

$$T' = \frac{T - T_{\infty}}{T_{S} - T_{\infty}}; \quad r' = \frac{r}{R_{p0}}; \quad R' = \frac{R_{p}}{R_{p0}};$$

$$t' = rac{t}{t_*}; \quad A_6^{} = rac{
ho V^2 R_{
m p0}^2}{\pi t_* \lambda ig(T_{
m S} - T_{
m \infty} ig)},$$

где $T_{\rm S}$ – предполагаемая постоянной температура поверхности ротора, равная температуре сублимации материала защитного покрытия.

Граничные условия для (5.26) и учетом (5.4), (5.5), (5.23) имеют вид:

$$r' = R'_{p}; \quad T' = 1; \quad \frac{\partial T'}{\partial r'} = A_{4} \left[\left(1 + A_{5} \right)^{4} + A_{5}^{4} \right] + J';$$
 (5.27)

$$r' \to \infty; \quad r' \frac{\partial T'}{\partial r'} \to 0; \quad J' = \frac{JLR_{p0}}{\lambda (T_S - T_{\infty})}.$$
 (5.28)

Здесь A_2 и A_4 определяются по формулам (5.16), (5.20) и заменами $R_{\rm p}$ и T_* на $R_{\rm p0}$ и $T_{\rm S}$.

Уравнения (5.8) динамики испарения защитного покрытия в безразмерной форме:

$$\frac{dR_{\rm p}'}{dt'} = -A_7 J',\tag{5.29}$$

где

$$A_7 = rac{\lambda ig(T_S - T_\inftyig)t_*}{L
ho_w R_{r0}^2}.$$

Интегрируя (5.26) по r' в пределах от $R'_{\rm p}$ до ∞ и привлекая граничные условия (5.27), (5.28), получим после преобразований формулу безразмерного массового потока:

$$J' = -A_4 \left[\left(1 + A_5 \right)^4 - A_5^4 \right] + \frac{A_2 A_6}{2R'} + \frac{A_6}{2} \left(\frac{\pi A_2}{t'} \right). \tag{5.30}$$