СТРУННЫЕ

Подставляя (5.30) в (5.29), получим дифференциальное уравнение:

$$\frac{dR'_{p}}{dt'} = B_1 - \frac{B_2}{R'} - \frac{B_3}{(t')^{1/2}},$$
(5.31)

описывающее изменение $R_{\rm p}'$ с течением времени. Здесь приняты обозначения:

$$B_1 = A_4 A_7 \left[\left(1 + A_5 \right)^4 - A_5^4 \right]; \quad B_2 = \frac{A_2 A_6 A_7}{2}; \quad B_3 = \frac{A_6 A_7}{2} \left(\pi A_2 \right)^{1/2}.$$

В качестве начального условия для (5.31) принимаем

$$t' = 0; R'_{p} = 1.$$

На рисунке 38 представлена полученная при численном решении уравнения (5.31) зависимость радиуса поперечного сечения ротора от времени. При расчетах принимаем $R_{\rm p0}$ = 0,05 м и V = 10^4 м/с и полагаем, что защитное покрытие выполнено из материала с параметрами, близкими к параметрам тефлона ($T_{\rm S}$ = 445 °K; L = 1,743 × 10^6 Дж/кг; $\rho_{\rm w}$ = 1500 кг/м³). Кривые 1 и 2 соответствуют параметрам воздуха при температуре 293 °K и 2273 °K.

Потеря массы ротора в результате сублимации, выраженная в процентах от начальной массы, характеризуется кривыми 1 и 2 на рисунке 39. При расчетах предполагалось, что средняя плотность ротора равна плотности его защитного покрытия.

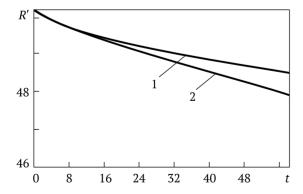


Рисунок 38 – Зависимость радиуса поперечного сечения ротора, имеющего сублимирующее покрытие, от времени

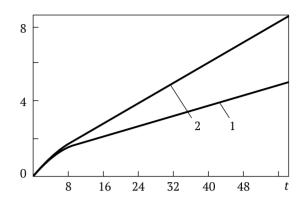


Рисунок 39 – Зависимость процентов потери массы ротора от времени

Как видно на рисунках, примерно через одну минуту движения с момента старта толщина защитного покрытия из материала, близкого по своим параметрам к тефлону, уменьшится на 1,3–2,1 мм, что составляет потерю массы ротора 5,2–8,1 % от его начальной массы. Температура воздуха у поверхности ротора к этому времени может снизиться до 1000–1500 °К, что соответствует рабочим температурам современных жаростойких покрытий. Толщину защитного сублимирующего слоя с учетом запаса можно принять равной 2,3–4,2 мм. После испарения сублимирующего слоя через 1–2 мин после старта тепловая защита ротора может осуществляться жаростойкой оболочкой.

5.7. Некоторые выводы

Как уже отмечалось, рассмотренные выше модели существенно упрощены. В действительности можно ожидать более сложную картину течения воздуха в окрестности поверхности ротора и процесса теплообмена. Полученные результаты поэтому представляют собой первое приближение к реальным параметрам процесса, но позволяют сформулировать некоторые выводы.

Вариант ротора без защитной вакуумной оболочки, по-видимому, принципиально реализуем, однако в ходе его технической проработки возникнут серьезные проблемы. Отметим лишь некоторые, наиболее очевидные.

1. Обсуждаемая математическая модель предполагает, что ротор представляет собой гладкий цилиндр. Кривизной ротора по сравнению с кривизной его поперечного сечения можно пренебречь, поэтому реальная