Условные обозначения

ТРАНСПОРТНЫЕ СИСТЕМЫ >>

 A_{π} – полная работа;

C – суммарная жесткость оболочки и ротора;

 C_{0} – жесткость элемента оболочки;

 $C_{\rm p}$ – жесткость элемента ротора;

 C_* – коэффициент лобового сопротивления оболочки;

 C_t – удельная теплоемкость;

d – диаметр;

E – модуль упругости материала ротора;

 $erfc(\xi)$ – функция ошибок Гаусса;

 е – удельный расход энергии на подъем 1 кг массы полезного груза;

F – сила упругости;

 $F_{\scriptscriptstyle \mathrm{TD}}$ – сила трения;

 F_* – максимальное значение силы трения;

 f_i – приведенный коэффициент трения;

G – сила притяжения к центру планеты;

g – гравитационное ускорение;

H – высота орбиты над экватором;

 H_{a} – высота плотных слоев атмосферы;

 $h_{\nu} = H/R$ – безразмерная высота орбиты;

J – плотность массового потока,отводимого с поверхности ротора;

K – кинетическая энергия;

 K_* – кинетическая энергия на этапе вывода ротора на орбиту;

 K_0 – параметр системы;

L – длина ротора;

 L_{s} – удельная теплота фазового перехода;

l – длина элемента ротора;

М – число Маха;

 $M_{\rm p}$ – масса всего ротора;

 M_{0} – масса всей оболочки, окружающей ротор;

 M_z – главный момент тяговых усилий относительно оси Z;

m – суммарная масса элементов ротора и окружающей оболочки;

 $m_{\rm o}$ – масса элемента оболочки, окружающей ротор;

 $m_{\rm n}$ – масса элемента ротора;

 $m_{\rm kp}$ – критическая масса элемента ротора;

 $m_{\rm r}$ – масса груза;

ТРАНСПОРТНЫЕ СИСТЕМЫ >>

N — магнитное давление системы подвеса (левитационное усилие);

P(x) – диссипативная сила;

p — параметр движения системы;

Q – сила сопротивления атмосферы;

 Q_r , Q_{ω} , Q_{ω} – обобщенные силы;

 Q_* – суммарное тяговое усилие;

q – тяговое усилие от одной секции электродвигателя;

 $q_* = g/R$ – гравитационный параметр движения системы;

 $q_{_{\rm T}}$ – плотность подводимого теплового потока;

 q_{2} – тяговое усилие от электродвигателя;

R – экваториальный радиус Земли;

 $R_{\rm a}$ – радиус сферы, ограничивающий плотную атмосферу;

 R_{v} – радиус круговой орбиты ротора;

 $R_{_{\rm KD}}$ – радиус кривизны траектории движения ротора;

 $R_{\scriptscriptstyle \mathrm{D}}$ – текущий радиус поперечного сечения ротора;

 $R_{\rm p0}$ – начальный радиус поперечного сечения ротора;

 R_* – текущий радиус поперечного сечения ротора;

 $r_{\rm p0}$ – начальный радиус орбиты ротора;

 $r_{_{\mathrm{D}}}$ – текущий радиус орбиты ротора;

 r_{∞} – радиус области захвата ротором окружающего воздуха;

S – длина пути;

 $S_{\rm p}$ – площадь поперечного сечения ротора;

s – дуговая координата;

T – температура;

 T_0 – температура воздуха в невозмущенном состоянии;